机器学习各个算法6--决策树

计算香农熵

相关函数

from math import log
import operator

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]    #列表
    labels = ['no surfacing','flippers'] #不浮出水面,脚蹼
    #change to discrete values
    return dataSet, labels

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)  #返回5
    labelCounts = {}   #Map
    for featVec in dataSet: #the number of unique elements and their occurance
        currentLabel = featVec[-1]  #最后一个元素
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0   #熵
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt

测试代码

import MLIAdecisionTree
myDataSet, myLabels = MLIAdecisionTree.createDataSet()
print MLIAdecisionTree.calcShannonEnt(myDataSet)
myDataSet[0][-1] = 'maybe'
print MLIAdecisionTree.calcShannonEnt(myDataSet)

结果

0.970950594455
1.37095059445


选择最好的数据集划分方式(也就是按照哪个特征)----也就是选择最好的特征进行划分

相关函数

#按照给定特征划分数据集
def splitDataSet(dataSet, axis, value): #划分属性,获得去掉axis位置的属性value剩下的样本
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]#就是取1--(axis-1)
            reducedFeatVec.extend(featVec[axis+1:]) #就是取得axis+1到最后的,然后合并
            #也就是去掉了axis
            retDataSet.append(reducedFeatVec)
    return retDataSet
# print splitDataSet(myDataSet, 0, 0)

#选择最好的数据集划分方式(也就是按照哪个特征)----也就是选择最好的特征进行划分
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)  #数据集的经验熵
    bestInfoGain = 0.0   #初始值
    bestFeature = -1     #初始值
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature 该特征的所有值
        #该维特征的所有值
        uniqueVals = set(featList)       #get a set of unique values,集合---无序不重复
        newEntropy = 0.0   #数据集的经验条件熵
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

测试代码

#划分数据集
print MLIAdecisionTree.splitDataSet(myDataSet, 0, 0)
print MLIAdecisionTree.splitDataSet(myDataSet, 0, 1)

#选择最好的数据集划分方式
print MLIAdecisionTree.chooseBestFeatureToSplit(myDataSet)

结果

[[1, 'no'], [1, 'no']]
[[1, 'yes'], [1, 'yes'], [0, 'no']]
0


递归构建决策树

相关函数

#创建决策树
def createTree(dataSet,labels):   #数据集和标签列表[注意是特征的标签!]
    classList = [example[-1] for example in dataSet]   #最后一个,也就是类标签
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)    #此时无法返回一个类标签,所以选择的是通过返回出现次数最多的那个类标签
    bestFeat = chooseBestFeatureToSplit(dataSet)
    #针对当前数据集选择最优划分特征
    bestFeatLabel = labels[bestFeat]
    #获得对应的维度标签  
    myTree = {bestFeatLabel:{}}
    #建立当前树结点,即维度标签及空值  ,注意这里的值依然是一个字典(就是结点),注意了!这里的树结构是用字典来表示的!!!
    del(labels[bestFeat])
    #将已选维度标签从标签列表中删除
    featValues = [example[bestFeat] for example in dataSet]
    #获取该维度的值  
    uniqueVals = set(featValues)
    #获得不重复的值
    for value in uniqueVals:
        #对最优维度的每个值进行操作,一个值对应一个分支,没毛病
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        #复制获得子维度标签,此时labels中已删除当前最优维度标签 
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        #递归对每个分支建立子树。使用到了之前的splitdataset划分子树函数,递归是因为,除了参数不同外,其余过程是一模一样的
        #递归就跟剥洋葱似的(一层一层),剥完为止! 次序是从左向右 P42 3-3图
    return myTree 
测试代码

#递归构建决策树
myTree = MLIAdecisionTree.createTree(myDataSet, myLabels)
print myTree
结果、

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}


绘制树节点

相关函数

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")      #�������У������ı���ͼ�ͷ��ʽ
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):      #���ƴ���ͷ��ע��
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
def createPlot1():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()

测试代码

#绘制树节点
import treePlotter
treePlotter.createPlot1()

结果



构造注解树

相关函数

def plotMidText(cntrPt, parentPt, txtString):      #在父子节点间填充文本信息
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

def retrieveTree(i):      #预先存储的树信息,这里下面存储的有两个树结构,要注意了
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

测试代码

#绘制树
myTree = treePlotter.retrieveTree(0)
print myTree
print treePlotter.getNumLeafs(myTree)
print treePlotter.getTreeDepth(myTree)
treePlotter.createPlot(myTree)
结果


#如何在硬盘上存储及读取决策树分类器

相关函数

def storeTree(inputTree,filename):   #��Ӳ���ϴ洢������������
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):     #��Ӳ���϶�ȡ������������
    import pickle
    fr = open(filename)
    return pickle.load(fr)
测试代码

trees.storeTree(myTree, 'classifierStorage.txt')
print trees.grabTree('classifierStorage.txt')

结果

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}


使用决策树预测隐形眼镜类型

测试代码

#隐形眼镜数据
fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age','prescript','astigmatic','tearRate']
lensesTree = trees.createTree(lenses, lensesLabels)
print lensesTree
treePlotter.createPlot(lensesTree)
结果

{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes': {'prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic': 'no lenses', 'young': 'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre': 'soft', 'presbyopic': {'prescript': {'hyper': 'soft', 'myope': 'no lenses'}}, 'young': 'soft'}}}}}}












猜你喜欢

转载自blog.csdn.net/qq_28088259/article/details/79209481
今日推荐