MSQL的优化查询 MySQL优化之my.conf配置详解 关于sql和MySQL的语句执行顺序(必看!!!)

今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显。关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情。当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能。这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库。希望下面的这些优化技巧对你有用。

1. 为查询缓存优化你的查询

大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。

这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:

1
2
3
4
5
6
// 查询缓存不开启
$r  = mysql_query( "SELECT username FROM user WHERE signup_date >= CURDATE()" );
 
// 开启查询缓存
$today  = date ( "Y-m-d" );
$r  = mysql_query( "SELECT username FROM user WHERE signup_date >= '$today'" );

上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。

 

2. EXPLAIN 你的 SELECT 查询

使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。

EXPLAIN 的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的……等等,等等。

挑一个你的SELECT语句(推荐挑选那个最复杂的,有多表联接的),把关键字EXPLAIN加到前面。你可以使用phpmyadmin来做这个事。然后,你会看到一张表格。下面的这个示例中,我们忘记加上了group_id索引,并且有表联接:

当我们为 group_id 字段加上索引后:

我们可以看到,前一个结果显示搜索了 7883 行,而后一个只是搜索了两个表的 9 和 16 行。查看rows列可以让我们找到潜在的性能问题。

3. 当只要一行数据时使用 LIMIT 1

当你查询表的有些时候,你已经知道结果只会有一条结果,但因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。

在这种情况下,加上 LIMIT 1 可以增加性能。这样一样,MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查少下一条符合记录的数据。

下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)

1
2
3
4
5
6
7
8
9
10
11
// 没有效率的:
$r  = mysql_query( "SELECT * FROM user WHERE country = 'China'" );
if  (mysql_num_rows( $r ) > 0) {
     // ...
}
 
// 有效率的:
$r  = mysql_query( "SELECT 1 FROM user WHERE country = 'China' LIMIT 1" );
if  (mysql_num_rows( $r ) > 0) {
     // ...
}

4. 为搜索字段建索引

索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。

从上图你可以看到那个搜索字串 “last_name LIKE ‘a%'”,一个是建了索引,一个是没有索引,性能差了4倍左右。

另外,你应该也需要知道什么样的搜索是不能使用正常的索引的。例如,当你需要在一篇大的文章中搜索一个词时,如: “WHERE post_content LIKE ‘%apple%'”,索引可能是没有意义的。你可能需要使用MySQL全文索引 或是自己做一个索引(比如说:搜索关键词或是Tag什么的)

5. 在Join表的时候使用相当类型的例,并将其索引

如果你的应用程序有很多 JOIN 查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。

而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把 DECIMAL 字段和一个 INT 字段Join在一起,MySQL就无法使用它们的索引。对于那些STRING类型,还需要有相同的字符集才行。(两个表的字符集有可能不一样)

1
2
3
4
5
6
// 在state中查找company
$r  = mysql_query("SELECT company_name FROM users
     LEFT JOIN companies ON (users.state = companies.state)
     WHERE users.id = $user_id ");
 
// 两个 state 字段应该是被建过索引的,而且应该是相当的类型,相同的字符集。

6. 千万不要 ORDER BY RAND()

想打乱返回的数据行?随机挑一个数据?真不知道谁发明了这种用法,但很多新手很喜欢这样用。但你确不了解这样做有多么可怕的性能问题。

如果你真的想把返回的数据行打乱了,你有N种方法可以达到这个目的。这样使用只让你的数据库的性能呈指数级的下降。这里的问题是:MySQL会不得不去执行RAND()函数(很耗CPU时间),而且这是为了每一行记录去记行,然后再对其排序。就算是你用了Limit 1也无济于事(因为要排序)

下面的示例是随机挑一条记录

1
2
3
4
5
6
7
8
9
// 千万不要这样做:
$r  = mysql_query( "SELECT username FROM user ORDER BY RAND() LIMIT 1" );
 
// 这要会更好:
$r  = mysql_query( "SELECT count(*) FROM user" );
$d  = mysql_fetch_row( $r );
$rand  = mt_rand(0, $d [0] - 1);
 
$r  = mysql_query( "SELECT username FROM user LIMIT $rand, 1" );

7. 避免 SELECT *

从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。

所以,你应该养成一个需要什么就取什么的好的习惯。

1
2
3
4
5
6
7
8
9
// 不推荐
$r  = mysql_query( "SELECT * FROM user WHERE user_id = 1" );
$d  = mysql_fetch_assoc( $r );
echo  "Welcome {$d['username']}" ;
 
// 推荐
$r  = mysql_query( "SELECT username FROM user WHERE user_id = 1" );
$d  = mysql_fetch_assoc( $r );
echo  "Welcome {$d['username']}" ;

8. 永远为每张表设置一个ID

我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的AUTO_INCREMENT标志。

就算是你 users 表有一个主键叫 “email”的字段,你也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。

而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……

在这里,只有一个情况是例外,那就是“关联表”的“外键”,也就是说,这个表的主键,通过若干个别的表的主键构成。我们把这个情况叫做“外键”。比如:有一个“学生表”有学生的ID,有一个“课程表”有课程ID,那么,“成绩表”就是“关联表”了,其关联了学生表和课程表,在成绩表中,学生ID和课程ID叫“外键”其共同组成主键。

9. 使用 ENUM 而不是 VARCHAR

ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。

如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。

MySQL也有一个“建议”(见第十条)告诉你怎么去重新组织你的表结构。当你有一个 VARCHAR 字段时,这个建议会告诉你把其改成 ENUM 类型。使用 PROCEDURE ANALYSE() 你可以得到相关的建议。

10. 从 PROCEDURE ANALYSE() 取得建议

PROCEDURE ANALYSE() 会让 MySQL 帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础的。

例如,如果你创建了一个 INT 字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成 MEDIUMINT 。或是你使用了一个 VARCHAR 字段,因为数据不多,你可能会得到一个让你把它改成 ENUM 的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。

在phpmyadmin里,你可以在查看表时,点击 “Propose table structure” 来查看这些建议

一定要注意,这些只是建议,只有当你的表里的数据越来越多时,这些建议才会变得准确。一定要记住,你才是最终做决定的人。

11. 尽可能的使用 NOT NULL

除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。

首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)

不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。

下面摘自MySQL自己的文档:

“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”

12. Prepared Statements

Prepared Statements很像存储过程,是一种运行在后台的SQL语句集合,我们可以从使用 prepared statements 获得很多好处,无论是性能问题还是安全问题。

Prepared Statements 可以检查一些你绑定好的变量,这样可以保护你的程序不会受到“SQL注入式”攻击。当然,你也可以手动地检查你的这些变量,然而,手动的检查容易出问题,而且很经常会被程序员忘了。当我们使用一些framework或是ORM的时候,这样的问题会好一些。

在性能方面,当一个相同的查询被使用多次的时候,这会为你带来可观的性能优势。你可以给这些Prepared Statements定义一些参数,而MySQL只会解析一次。

虽然最新版本的MySQL在传输Prepared Statements是使用二进制形势,所以这会使得网络传输非常有效率。

当然,也有一些情况下,我们需要避免使用Prepared Statements,因为其不支持查询缓存。但据说版本5.1后支持了。

在PHP中要使用prepared statements,你可以查看其使用手册:mysqli 扩展 或是使用数据库抽象层,如: PDO.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 创建 prepared statement
if  ( $stmt  = $mysqli ->prepare( "SELECT username FROM user WHERE state=?" )) {
 
     // 绑定参数
     $stmt ->bind_param( "s" , $state );
 
     // 执行
     $stmt ->execute();
 
     // 绑定结果
     $stmt ->bind_result( $username );
 
     // 移动游标
     $stmt ->fetch();
 
     printf( "%s is from %s\n" , $username , $state );
 
     $stmt ->close();
}

13. 无缓冲的查询

正常的情况下,当你在当你在你的脚本中执行一个SQL语句的时候,你的程序会停在那里直到没这个SQL语句返回,然后你的程序再往下继续执行。你可以使用无缓冲查询来改变这个行为。

关于这个事情,在PHP的文档中有一个非常不错的说明:mysql_unbuffered_query() 函数:

“mysql_unbuffered_query() sends the SQL query query to MySQL without automatically fetching and buffering the result rows as mysql_query() does. This saves a considerable amount of memory with SQL queries that produce large result sets, and you can start working on the result set immediately after the first row has been retrieved as you don’t have to wait until the complete SQL query has been performed.”

上面那句话翻译过来是说,mysql_unbuffered_query() 发送一个SQL语句到MySQL而并不像mysql_query()一样去自动fethch和缓存结果。这会相当节约很多可观的内存,尤其是那些会产生大量结果的查询语句,并且,你不需要等到所有的结果都返回,只需要第一行数据返回的时候,你就可以开始马上开始工作于查询结果了。

然而,这会有一些限制。因为你要么把所有行都读走,或是你要在进行下一次的查询前调用 mysql_free_result() 清除结果。而且,mysql_num_rows() 或 mysql_data_seek() 将无法使用。所以,是否使用无缓冲的查询你需要仔细考虑。

14. 把IP地址存成 UNSIGNED INT

很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。

我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形。

而你的查询,你可以使用 INET_ATON() 来把一个字符串IP转成一个整形,并使用 INET_NTOA() 把一个整形转成一个字符串IP。在PHP中,也有这样的函数 ip2long() 和 long2ip()

1
$r  = "UPDATE users SET ip = INET_ATON('{$_SERVER['REMOTE_ADDR']}') WHERE user_id = $user_id" ;

15. 固定长度的表会更快

如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。

固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。

并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。

使用“垂直分割”技术(见下一条),你可以分割你的表成为两个一个是定长的,一个则是不定长的。

16. 垂直分割

“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过一张表有100多个字段,很恐怖)

示例一:在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢? 这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有好的性能。

示例二: 你有一个叫 “last_login” 的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。

另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。

17. 拆分大的 DELETE 或 INSERT 语句

如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。

Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。

如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上掛了。

所以,如果你有一个大的处理,你定你一定把其拆分,使用 LIMIT 条件是一个好的方法。下面是一个示例:

1
2
3
4
5
6
7
8
9
10
while  (1) {
     //每次只做1000条
     mysql_query( "DELETE FROM logs WHERE log_date <= '2009-11-01' LIMIT 1000" );
     if  (mysql_affected_rows() == 0) {
         // 没得可删了,退出!
         break ;
     }
     // 每次都要休息一会儿
     usleep(50000);
}

18. 越小的列会越快

对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。

参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。

如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。

当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot的例子(2009年11月06日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。

19. 选择正确的存储引擎

在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM?》讨论和这个事情。

MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。

InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。

下面是MySQL的手册

20. 使用一个对象关系映射器(Object Relational Mapper)

使用 ORM (Object Relational Mapper),你能够获得可靠的性能增涨。一个ORM可以做的所有事情,也能被手动的编写出来。但是,这需要一个高级专家。

ORM 的最重要的是“Lazy Loading”,也就是说,只有在需要的去取值的时候才会去真正的去做。但你也需要小心这种机制的副作用,因为这很有可能会因为要去创建很多很多小的查询反而会降低性能。

ORM 还可以把你的SQL语句打包成一个事务,这会比单独执行他们快得多得多。

目前,个人最喜欢的PHP的ORM是:Doctrine

21. 小心“永久链接”

“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。

在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问题,文件句柄数,等等。

而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地考虑一下你的整个系统的架构。

转自 https://coolshell.cn/articles/1846.html



1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘�c%’
若要提高效率,可以考虑全文检索
6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、
如果在 where
子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然
而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′
10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。
12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15、
索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或
update
时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有
必要。
16.
应尽可能的避免更新 clustered 索引数据列,因为 clustered
索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新
clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21、避免频繁创建和删除临时表,以减少系统表资源的消耗。
22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。
23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27、
与临时表一样,游标并不是不可使用。对小型数据集使用
FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游
标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30、尽量避免大事务操作,提高系统并发能力。

MySQL优化之my.conf配置详解

 最近项目不太忙,所以有时间静心来研究下mysql的优化,对于MySQL的设置是否合理优化,直接影响到网站的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识,同时还需要长时间的观察统计并且根据经验进行判断,然后设置合理的参数。 下面我们了解一下MySQL优化的一些基础,MySQL的优化我分为两个部分,一是服务器物理硬件的优化,二是MySQL自身(my.cnf)的优化。


一、服务器硬件对MySQL性能的影响
①磁盘寻道能力(磁盘I/O),以目前高转速SCSI硬盘(7200转/秒)为例,这种硬盘理论上每秒寻道7200次,这是物理特性决定的,没有办法改变。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案: 使用RAID-0+1磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。

②CPU 对于MySQL应用,推荐使用S.M.P.架构的多路对称CPU,例如:可以使用两颗Intel Xeon 3.6GHz的CPU,现在我较推荐用4U的服务器来专门做数据库服务器,不仅仅是针对于mysql。

③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到了高端服务器基本上内存都超过了16G。


二、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。 对MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。 由于my.cnf文件的优化设置是与服务器硬件配置息息相关的, 因而我们指定一个假想的服务器硬件环境:CPU: 2颗Intel Xeon 2.4GHz 内存: 4GB DDR 硬盘: SCSI 73GB(很常见的2U服务器 ) 。
下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:

  1. [client]
  2. default-character-set=utf8mb4
  3. #mysqlde utf8字符集默认为3位的,不支持emoji表情及部分不常见的汉字,故推荐使用utf8mb4
  4. [mysql]
  5. default-character-set=utf8mb4
  6. [mysqld]
  7. skip-locking
  8. #避免MySQL的外部锁定,减少出错几率增强稳定性。
  9. #skip-name-resolve
  10. # 禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
  11. # 因为docker官方的mysql的dockerfile中有一段代码:echo '[mysqld]\nskip-host-cache\nskip-name-resolve' > /etc/mysql/conf.d/docker.cnf将这个配置写入另一个文件,这里咱们就不用写了,docker默认解析docker name或者service为ip,这样mysql就不用解析了
  12. back_log = 512
  13. # MySQL能有的连接数量。当主要MySQL线程在一个很短时间内得到非常多的连接请求,这就起作用,
  14. # 然后主线程花些时间(尽管很短)检查连接并且启动一个新线程。back_log值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中。
  15. # 如果期望在一个短时间内有很多连接,你需要增加它。也就是说,如果MySQL的连接数据达到max_connections时,新来的请求将会被存在堆栈中,
  16. # 以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。
  17. # 另外,这值(back_log)限于您的操作系统对到来的TCP/IP连接的侦听队列的大小。
  18. # 你的操作系统在这个队列大小上有它自己的限制(可以检查你的OS文档找出这个变量的最大值),试图设定back_log高于你的操作系统的限制将是无效的。默认值为50,对于Linux系统推荐设置为小于512的整数。
  19. key_buffer_size = 64M
  20. # 这是mysql优化中非常重要的一项配置
  21. # 指定用于索引的缓冲区大小,增加它可得到更好处理的索引(对所有读和多重写)。注意:该参数值设置的过大反而会是服务器整体效率降低
  22. # 默认值是16M,对于内存在4GB左右的服务器该参数可设置为384M或512M。
  23. # 想要知道key_buffer_size设置是否合理,通过命令show global status like 'key_read%';来查看Key_read_requests(索引请求次数)和Key_reads(从i/o中读取数据,也就是未命中索引),
  24. # 计算索引未命中缓存的概率:key_cache_miss_rate = Key_reads / Key_read_requests * 100%,至少是1:100,1:1000更好,比如我的key_cache_miss_rate = 15754 / 26831941 * 100% = 1/1700,也就是说1700个中只有一个请求直接读取硬盘
  25. # 如果key_cache_miss_rate在0.01%以下的话,key_buffer_size分配的过多,可以适当减少。
  26. # MySQL服务器还提供了key_blocks_*参数:show global status like 'key_blocks_u%';
  27. # Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。
  28. # 比较理想的设置:Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% < 80%
  29. max_connections = 1500
  30. # MySQL的最大连接数,默认是100,测试开过1万个连接数,并将他们持久化,内存增加了一个多G,由此算出一个连接大概为100+K
  31. # 如果服务器的并发连接请求量比较大,建议调高此值,以增加并行连接数量,当然这建立在机器能支撑的情况下,因为如果连接数越多,介于MySQL会为每个连接提供连接缓冲区,就会开销越多的内存,所以要适当调整该值,不能盲目提高设值。可以过'conn%'通配符查看当前状态的连接数量,以定夺该值的大小。
  32. # 比较理想的设置应该是max_used_connections / max_connections * 100% ≈ 80%,当发现这一比例在10%以下的话,说明最大连接数设置的过高了
  33. # 查看最大的连接数:SHOW VARIABLES LIKE "max_connections";
  34. # 查看已使用的最大连接:SHOW GLOBAL STATUS LIKE 'max_used_connections';
  35. # 显示连接相关的设置:SHOW STATUS LIKE '%connect%';
  36. # 显示当前正在执行的mysql连接:SHOW PROCESSLIST
  37. innodb_buffer_pool_size = 128M
  38. # InnoDB使用一个缓冲池来保存索引和原始数据, 默认值为128M
  39. # 这里你设置越大,你在存取表里面数据时所需要的磁盘I/O越少.
  40. # 在一个独立使用的数据库服务器上,你可以设置这个变量到服务器物理内存大小的80%即5-6GB(8GB内存),20-25GB(32GB内存),100-120GB(128GB内存),注意这是在独立数据库服务器中推荐的设置
  41. # 不要设置过大,否则,会导致systemswap空间被占用,导致操作系统变慢,从而减低sql查询的效率。
  42. # 注意在32位系统上你每个进程可能被限制在 2-3.5G 用户层面内存限制,所以不要设置的太高.
  43. query_cache_size = 0
  44. # MySQL的查询缓冲大小(从4.0.1开始,MySQL提供了查询缓冲机制)使用查询缓冲,MySQL 5.6以后的默认值为0MySQLSELECT语句和查询结果存放在缓冲区中,
  45. # query cache(查询缓存)是一个众所周知的瓶颈,甚至在并发并不多的时候也是如此。 最佳选项是将其从一开始就停用,设置query_cache_size = 0(MySQL 5.6以后的默认值)并利用其他方法加速查询:优化索引、增加拷贝分散负载或者启用额外的缓存(比如memcacheredis)。
  46. # 打开query cacheQcache)对读和写都会带来额外的消耗:a、读查询开始之前必须检查是否命中缓存。b、如果读查询可以缓存,那么执行完之后会写入缓存。 c、当向某个表写入数据的时候,必须将这个表所有的缓存设置为失效
  47. # 缓存存放在一个引用表中,通过一个哈希值引用,这个哈希值包括查询本身,数据库,客户端协议的版本等,任何字符上的不同,例如空格,注释都会导致缓存不命中。
  48. # 通过命令:show status like '%query_cache%';查看查询缓存相关设置:
  49. # # have_query_cache:是否有此功能
  50. # # query_cache_limit:允许 Cache 的单条 Query 结果集的最大容量,默认是1MB,超过此参数设置的 Query 结果集将不会被 Cache
  51. # # query_cache_min_res_unit:设置 Query Cache 中每次分配内存的最小空间大小,也就是每个 QueryCache 最小占用的内存空间大小
  52. # # uery_cache_size:设置 Query Cache 所使用的内存大小,默认值为0,大小必须是1024的整数倍,如果不是整数倍,MySQL 会自动调整降低最小量以达到1024的倍数
  53. # # query_cache_type:控制 Query Cache 功能的开关,可以设置为0(OFF),1(ON)和2(DEMAND)三种,意义分别如下:
  54. # # # 0(OFF):关闭 Query Cache 功能,任何情况下都不会使用 Query Cache
  55. # # # 1(ON):开启 Query Cache 功能,但是当 SELECT 语句中使用的 SQL_NO_CACHE 提示后,将不使用Query Cache
  56. # # # 2(DEMAND):开启 Query Cache 功能,但是只有当 SELECT 语句中使用了 SQL_CACHE 提示后,才使用 Query Cache
  57. # # query_cache_wlock_invalidate:控制当有写锁定发生在表上的时刻是否先失效该表相关的 Query Cache,如果设置为 1(TRUE),则在写锁定的同时将失效该表相关的所有 Query Cache,如果设置为0(FALSE)则在锁定时刻仍然允许读取该表相关的 Query Cache
  58. # 通过命令:show status like ‘%Qcache%’;查看查询缓存使用状态值:
  59. # # Qcache_free_blocks:目前还处于空闲状态的 Query Cache 中内存 Block 数目
  60. # # Qcache_free_memory:目前还处于空闲状态的 Query Cache 内存总量
  61. # # Qcache_hitsQuery Cache 命中次数
  62. # # Qcache_inserts:向 Query Cache 中插入新的 Query Cache 的次数,也就是没有命中的次数
  63. # # Qcache_lowmem_prunes:当 Query Cache 内存容量不够,需要从中删除老的 Query Cache 以给新的 Cache 对象使用的次数
  64. # # Qcache_not_cached:没有被 CacheSQL 数,包括无法被 CacheSQL 以及由于 query_cache_type 设置的不会被 CacheSQL
  65. # # Qcache_queries_in_cache:目前在 Query Cache 中的 SQL 数量
  66. # # Qcache_total_blocksQuery Cache 中总的 Block 数量
  67. # 如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,且Qcache_free_memory值很小,此时需要增加缓冲大小;
  68. # 如果Qcache_hits的值不大,且Qcache_free_memory值较大,则表明你的查询重复率很低,查询缓存不适合你当前系统,这种情况下使用查询缓冲反而会影响效率,可以通过设置query_cache_size = 0或者query_cache_type 来关闭查询缓存。
  69. # Query Cache 的大小设置超过256MB,这也是业界比较常用的做法。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲
  70. max_connect_errors = 6000
  71. # 对于同一主机,如果有超出该参数值个数的中断错误连接,则该主机将被禁止连接。如需对该主机进行解禁,执行:FLUSH HOST。防止黑客
  72. open_files_limit = 65535
  73. # MySQL打开的文件描述符限制,默认最小1024;当open_files_limit没有被配置的时候,比较max_connections*5ulimit -n的值,哪个大用哪个,
  74. # 当open_file_limit被配置的时候,比较open_files_limitmax_connections*5的值,哪个大用哪个。
  75. table_open_cache = 128
  76. # MySQL每打开一个表,都会读入一些数据到table_open_cache缓存中,当MySQL在这个缓存中找不到相应信息时,才会去磁盘上读取。默认值64
  77. # 假定系统有200个并发连接,则需将此参数设置为200*N(N为每个连接所需的文件描述符数目);
  78. # 当把table_open_cache设置为很大时,如果系统处理不了那么多文件描述符,那么就会出现客户端失效,连接不上
  79. max_allowed_packet = 4M
  80. # 接受的数据包大小;增加该变量的值十分安全,这是因为仅当需要时才会分配额外内存。例如,仅当你发出长查询或MySQLd必须返回大的结果行时MySQLd才会分配更多内存。
  81. # 该变量之所以取较小默认值是一种预防措施,以捕获客户端和服务器之间的错误信息包,并确保不会因偶然使用大的信息包而导致内存溢出。
  82. binlog_cache_size = 1M
  83. # 一个事务,在没有提交的时候,产生的日志,记录到Cache中;等到事务提交需要提交的时候,则把日志持久化到磁盘。默认binlog_cache_size大小32K
  84. max_heap_table_size = 8M
  85. # 定义了用户可以创建的内存表(memory table)的大小。这个值用来计算内存表的最大行数值。这个变量支持动态改变
  86. tmp_table_size = 16M
  87. # MySQLheap(堆积)表缓冲大小。所有联合在一个DML指令内完成,并且大多数联合甚至可以不用临时表即可以完成。
  88. # 大多数临时表是基于内存的(HEAP)表。具有大的记录长度的临时表 (所有列的长度的和)或包含BLOB列的表存储在硬盘上。
  89. # 如果某个内部heap(堆积)表大小超过tmp_table_sizeMySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。还可以通过设置tmp_table_size选项来增加临时表的大小。也就是说,如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果
  90. read_buffer_size = 2M
  91. # MySQL读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySQL会为它分配一段内存缓冲区。read_buffer_size变量控制这一缓冲区的大小。
  92. # 如果对表的顺序扫描请求非常频繁,并且你认为频繁扫描进行得太慢,可以通过增加该变量值以及内存缓冲区大小提高其性能
  93. read_rnd_buffer_size = 8M
  94. # MySQL的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,
  95. # MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大
  96. sort_buffer_size = 8M
  97. # MySQL执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。
  98. # 如果不能,可以尝试增加sort_buffer_size变量的大小
  99. join_buffer_size = 8M
  100. # 联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享
  101. thread_cache_size = 8
  102. # 这个值(默认8)表示可以重新利用保存在缓存中线程的数量,当断开连接时如果缓存中还有空间,那么客户端的线程将被放到缓存中,
  103. # 如果线程重新被请求,那么请求将从缓存中读取,如果缓存中是空的或者是新的请求,那么这个线程将被重新创建,如果有很多新的线程,
  104. # 增加这个值可以改善系统性能.通过比较ConnectionsThreads_created状态的变量,可以看到这个变量的作用。(–>表示要调整的值)
  105. # 根据物理内存设置规则如下:
  106. # 1G —> 8
  107. # 2G —> 16
  108. # 3G —> 32
  109. # 大于3G —> 64
  110. query_cache_limit = 2M
  111. #指定单个查询能够使用的缓冲区大小,默认1M
  112. ft_min_word_len = 4
  113. # 分词词汇最小长度,默认4
  114. transaction_isolation = REPEATABLE-READ
  115. # MySQL支持4种事务隔离级别,他们分别是:
  116. # READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, SERIALIZABLE.
  117. # 如没有指定,MySQL默认采用的是REPEATABLE-READ,ORACLE默认的是READ-COMMITTED
  118. log_bin = mysql-bin
  119. binlog_format = mixed
  120. expire_logs_days = 30 #超过30天的binlog删除
  121. log_error = /data/mysql/mysql-error.log #错误日志路径
  122. slow_query_log = 1
  123. long_query_time = 1 #慢查询时间 超过1秒则为慢查询
  124. slow_query_log_file = /data/mysql/mysql-slow.log
  125. performance_schema = 0
  126. explicit_defaults_for_timestamp
  127. #lower_case_table_names = 1 #不区分大小写
  128. skip-external-locking #MySQL选项以避免外部锁定。该选项默认开启
  129. default-storage-engine = InnoDB #默认存储引擎
  130. innodb_file_per_table = 1
  131. # InnoDB为独立表空间模式,每个数据库的每个表都会生成一个数据空间
  132. # 独立表空间优点:
  133. # 1.每个表都有自已独立的表空间。
  134. # 2.每个表的数据和索引都会存在自已的表空间中。
  135. # 3.可以实现单表在不同的数据库中移动。
  136. # 4.空间可以回收(除drop table操作处,表空不能自已回收)
  137. # 缺点:
  138. # 单表增加过大,如超过100G
  139. # 结论:
  140. # 共享表空间在Insert操作上少有优势。其它都没独立表空间表现好。当启用独立表空间时,请合理调整:innodb_open_files
  141. innodb_open_files = 500
  142. # 限制Innodb能打开的表的数据,如果库里的表特别多的情况,请增加这个。这个值默认是300
  143. innodb_write_io_threads = 4
  144. innodb_read_io_threads = 4
  145. # innodb使用后台线程处理数据页上的读写 I/O(输入输出)请求,根据你的 CPU 核数来更改,默认是4
  146. # 注:这两个参数不支持动态改变,需要把该参数加入到my.cnf里,修改完后重启MySQL服务,允许值的范围从 1-64
  147. innodb_thread_concurrency = 0
  148. # 默认设置为 0,表示不限制并发数,这里推荐设置为0,更好去发挥CPU多核处理能力,提高并发量
  149. innodb_purge_threads = 1
  150. # InnoDB中的清除操作是一类定期回收无用数据的操作。在之前的几个版本中,清除操作是主线程的一部分,这意味着运行时它可能会堵塞其它的数据库操作。
  151. # 从MySQL5.5.X版本开始,该操作运行于独立的线程中,并支持更多的并发数。用户可通过设置innodb_purge_threads配置参数来选择清除操作是否使用单
  152. # 独线程,默认情况下参数设置为0(不使用单独线程),设置为 1 时表示使用单独的清除线程。建议为1
  153. innodb_flush_log_at_trx_commit = 2
  154. # 0:如果innodb_flush_log_at_trx_commit的值为0,log buffer每秒就会被刷写日志文件到磁盘,提交事务的时候不做任何操作(执行是由mysql的master thread线程来执行的。
  155. # 主线程中每秒会将重做日志缓冲写入磁盘的重做日志文件(REDO LOG)中。不论事务是否已经提交)默认的日志文件是ib_logfile0,ib_logfile1
  156. # 1:当设为默认值1的时候,每次提交事务的时候,都会将log buffer刷写到日志。
  157. # 2:如果设为2,每次提交事务都会写日志,但并不会执行刷的操作。每秒定时会刷到日志文件。要注意的是,并不能保证100%每秒一定都会刷到磁盘,这要取决于进程的调度。
  158. # 每次事务提交的时候将数据写入事务日志,而这里的写入仅是调用了文件系统的写入操作,而文件系统是有 缓存的,所以这个写入并不能保证数据已经写入到物理磁盘
  159. # 默认值1是为了保证完整的ACID。当然,你可以将这个配置项设为1以外的值来换取更高的性能,但是在系统崩溃的时候,你将会丢失1秒的数据。
  160. # 设为0的话,mysqld进程崩溃的时候,就会丢失最后1秒的事务。设为2,只有在操作系统崩溃或者断电的时候才会丢失最后1秒的数据。InnoDB在做恢复的时候会忽略这个值。
  161. # 总结
  162. # 设为1当然是最安全的,但性能页是最差的(相对其他两个参数而言,但不是不能接受)。如果对数据一致性和完整性要求不高,完全可以设为2,如果只最求性能,例如高并发写的日志服务器,设为0来获得更高性能
  163. innodb_log_buffer_size = 4M
  164. # 此参数确定些日志文件所用的内存大小,以M为单位。缓冲区更大能提高性能,但意外的故障将会丢失数据。MySQL开发人员建议设置为1-8M之间
  165. innodb_log_file_size = 32M
  166. # 此参数确定数据日志文件的大小,更大的设置可以提高性能,但也会增加恢复故障数据库所需的时间
  167. innodb_log_files_in_group = 3
  168. # 为提高性能,MySQL可以以循环方式将日志文件写到多个文件。推荐设置为3
  169. innodb_max_dirty_pages_pct = 90
  170. # innodb主线程刷新缓存池中的数据,使脏数据比例小于90%
  171. innodb_lock_wait_timeout = 120
  172. # InnoDB事务在被回滚之前可以等待一个锁定的超时秒数。InnoDB在它自己的锁定表中自动检测事务死锁并且回滚事务。InnoDB用LOCK TABLES语句注意到锁定设置。默认值是50秒
  173. bulk_insert_buffer_size = 8M
  174. # 批量插入缓存大小, 这个参数是针对MyISAM存储引擎来说的。适用于在一次性插入100-1000+条记录时, 提高效率。默认值是8M。可以针对数据量的大小,翻倍增加。
  175. myisam_sort_buffer_size = 8M
  176. # MyISAM设置恢复表之时使用的缓冲区的尺寸,当在REPAIR TABLE或用CREATE INDEX创建索引或ALTER TABLE过程中排序 MyISAM索引分配的缓冲区
  177. myisam_max_sort_file_size = 10G
  178. # 如果临时文件会变得超过索引,不要使用快速排序索引方法来创建一个索引。注释:这个参数以字节的形式给出
  179. myisam_repair_threads = 1
  180. # 如果该值大于1,在Repair by sorting过程中并行创建MyISAM表索引(每个索引在自己的线程内)
  181. interactive_timeout = 28800
  182. # 服务器关闭交互式连接前等待活动的秒数。交互式客户端定义为在mysql_real_connect()中使用CLIENT_INTERACTIVE选项的客户端。默认值:28800秒(8小时)
  183. wait_timeout = 28800
  184. # 服务器关闭非交互连接之前等待活动的秒数。在线程启动时,根据全局wait_timeout值或全局interactive_timeout值初始化会话wait_timeout值,
  185. # 取决于客户端类型(由mysql_real_connect()的连接选项CLIENT_INTERACTIVE定义)。参数默认值:28800秒(8小时)
  186. # MySQL服务器所支持的最大连接数是有上限的,因为每个连接的建立都会消耗内存,因此我们希望客户端在连接到MySQL Server处理完相应的操作后,
  187. # 应该断开连接并释放占用的内存。如果你的MySQL Server有大量的闲置连接,他们不仅会白白消耗内存,而且如果连接一直在累加而不断开,
  188. # 最终肯定会达到MySQL Server的连接上限数,这会报'too many connections'的错误。对于wait_timeout的值设定,应该根据系统的运行情况来判断。
  189. # 在系统运行一段时间后,可以通过show processlist命令查看当前系统的连接状态,如果发现有大量的sleep状态的连接进程,则说明该参数设置的过大,
  190. # 可以进行适当的调整小些。要同时设置interactive_timeout和wait_timeout才会生效。
  191. [mysqldump]
  192. quick
  193. max_allowed_packet = 16M #服务器发送和接受的最大包长度
  194. [myisamchk]
  195. key_buffer_size = 8M
  196. sort_buffer_size = 8M
  197. read_buffer = 4M
  198. write_buffer = 4M


总结:mysql配置项的优化是一件非常复杂且长期坚持的事情,因为不同的并发级别会导致某个配置项不符合当前的情况,所以希望能和大家一起持续关注着mysql的优化,也同样欢迎大家列出自己再mysql优化中遇到的各种坑,让大家学习和借鉴

关于sql和MySQL的语句执行顺序(必看!!!)

今天遇到一个问题就是mysql中insert into 和update以及delete语句中能使用as别名吗?目前还在查看,但是在查阅资料时发现了一些有益的知识,给大家分享一下,就是关于sql以及MySQL语句执行顺序:

sql和mysql执行顺序,发现内部机制是一样的。最大区别是在别名的引用上。 

一、sql执行顺序 
(1)from 
(3) join 
(2) on 
(4) where 
(5)group by(开始使用select中的别名,后面的语句中都可以使用)
(6) avg,sum.... 
(7)having 
(8) select 
(9) distinct 

(10) order by
(11) limit 


从这个顺序中我们不难发现,所有的 查询语句都是从from开始执行的,在执行过程中,每个步骤都会为下一个步骤生成一个虚拟表,这个虚拟表将作为下一个执行步骤的输入。 
第一步:首先对from子句中的前两个表执行一个笛卡尔乘积,此时生成虚拟表 vt1(选择相对小的表做基础表) 
第二步:接下来便是应用on筛选器,on 中的逻辑表达式将应用到 vt1 中的各个行,筛选出满足on逻辑表达式的行,生成虚拟表 vt2 
第三步:如果是outer join 那么这一步就将添加外部行,left outer jion 就把左表在第二步中过滤的添加进来,如果是right outer join 那么就将右表在第二步中过滤掉的行添加进来,这样生成虚拟表 vt3 

第四步:如果 from 子句中的表数目多余两个表,那么就将vt3和第三个表连接从而计算笛卡尔乘积,生成虚拟表,该过程就是一个重复1-3的步骤,最终得到一个新的虚拟表 vt3。 

第五步:应用where筛选器,对上一步生产的虚拟表引用where筛选器,生成虚拟表vt4,在这有个比较重要的细节不得不说一下,对于包含outer join子句的查询,就有一个让人感到困惑的问题,到底在on筛选器还是用where筛选器指定逻辑表达式呢?on和where的最大区别在于,如果在on应用逻辑表达式那么在第三步outer join中还可以把移除的行再次添加回来,而where的移除的最终的。举个简单的例子,有一个学生表(班级,姓名)和一个成绩表(姓名,成绩),我现在需要返回一个x班级的全体同学的成绩,但是这个班级有几个学生缺考,也就是说在成绩表中没有记录。为了得到我们预期的结果我们就需要在on子句指定学生和成绩表的关系(学生.姓名=成绩.姓名)那么我们是否发现在执行第二步的时候,对于没有参加考试的学生记录就不会出现在vt2中,因为他们被on的逻辑表达式过滤掉了,但是我们用left outer join就可以把左表(学生)中没有参加考试的学生找回来,因为我们想返回的是x班级的所有学生,如果在on中应用学生.班级='x'的话,left outer join会把x班级的所有学生记录找回(感谢网友康钦谋__康钦苗的指正,所以只能在where筛选器中应用学生.班级='x' 因为它的过滤是最终的。 

第六步:group by 子句将中的唯一的值组合成为一组,得到虚拟表vt5。如果应用了group by,那么后面的所有步骤都只能得到的vt5的列或者是聚合函数(count、sum、avg等)。原因在于最终的结果集中只为每个组包含一行。这一点请牢记。 

第七步:应用cube或者rollup选项,为vt5生成超组,生成vt6. 
第八步:应用having筛选器,生成vt7。having筛选器是第一个也是为唯一一个应用到已分组数据的筛选器。 
第九步:处理select子句。将vt7中的在select中出现的列筛选出来。生成vt8. 

第十步:应用distinct子句,vt8中移除相同的行,生成vt9。事实上如果应用了group by子句那么distinct是多余的,原因同样在于,分组的时候是将列中唯一的值分成一组,同时只为每一组返回一行记录,那么所以的记录都将是不相同的。 

第十一步:应用order by子句。按照order_by_condition排序vt9,此时返回的一个游标,而不是虚拟表。sql是基于集合的理论的,集合不会预先对他的行排序,它只是成员的逻辑集合,成员的顺序是无关紧要的。对表进行排序的查询可以返回一个对象,这个对象包含特定的物理顺序的逻辑组织。这个对象就叫游标。正因为返回值是游标,那么使用order by 子句查询不能应用于表表达式。排序是很需要成本的,除非你必须要排序,否则最好不要指定order by,最后,在这一步中是第一个也是唯一一个可以使用select列表中别名的步骤。 

第十二步:应用top选项。此时才返回结果给请求者即用户。 

二、mysql的执行顺序  
SELECT语句定义 
一个完成的SELECT语句包含可选的几个子句。SELECT语句的定义如下: 
SQL代码 

<SELECT clause> [<FROM clause>] [<WHERE clause>] [<GROUP BY clause>] [<HAVING clause>] [<ORDER BY clause>] [<LIMIT clause>] 
SELECT子句是必选的,其它子句如WHERE子句、GROUP BY子句等是可选的。 
一个SELECT语句中,子句的顺序是固定的。例如GROUP BY子句不会位于WHERE子句的前面。 

SELECT语句执行顺序 
SELECT语句中子句的执行顺序与SELECT语句中子句的输入顺序是不一样的,所以并不是从SELECT子句开始执行的,而是按照下面的顺序执行: 
开始->FROM子句->WHERE子句->GROUP BY子句->HAVING子句->ORDER BY子句->SELECT子句->LIMIT子句->最终结果 
每个子句执行后都会产生一个中间结果,供接下来的子句使用,如果不存在某个子句,就跳过 
对比了一下,mysql和sql执行顺序基本是一样的, 标准顺序的 SQL 语句为: 

  1. select 考生姓名, max(总成绩) as max总成绩
  2. from tb_Grade
  3. where 考生姓名 is not null
  4. group by 考生姓名
  5. having max(总成绩) > 600
  6. order by max总成绩

 在上面的示例中 SQL 语句的执行顺序如下: 

   (1). 首先执行 FROM 子句, 从 tb_Grade 表组装数据源的数据 

   (2). 执行 WHERE 子句, 筛选 tb_Grade 表中所有数据不为 NULL 的数据 

   (3). 执行 GROUP BY 子句, 把 tb_Grade 表按 "学生姓名" 列进行分组(注:这一步开始才可以使用select中的别名,他返回的是一个游标,而不是一个表,所以在where中不可以使用select中的别名,而having却可以使用,感谢网友  zyt1369  提出这个问题)

   (4). 计算 max() 聚集函数, 按 "总成绩" 求出总成绩中最大的一些数值 

   (5). 执行 HAVING 子句, 筛选课程的总成绩大于 600 分的. 

   (7). 执行 ORDER BY 子句, 把最后的结果按 "Max 成绩" 进行排序. 

希望此篇文章能让大家对mysql执行顺序有一个了解,另外为大家推荐两篇MySQL优化的文章:

MySQL优化之推荐使用规范

MySQL优化之my.conf配置详解


 最近项目不太忙,所以有时间静心来研究下mysql的优化,对于MySQL的设置是否合理优化,直接影响到网站的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识,同时还需要长时间的观察统计并且根据经验进行判断,然后设置合理的参数。 下面我们了解一下MySQL优化的一些基础,MySQL的优化我分为两个部分,一是服务器物理硬件的优化,二是MySQL自身(my.cnf)的优化。


一、服务器硬件对MySQL性能的影响
①磁盘寻道能力(磁盘I/O),以目前高转速SCSI硬盘(7200转/秒)为例,这种硬盘理论上每秒寻道7200次,这是物理特性决定的,没有办法改变。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案: 使用RAID-0+1磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。

②CPU 对于MySQL应用,推荐使用S.M.P.架构的多路对称CPU,例如:可以使用两颗Intel Xeon 3.6GHz的CPU,现在我较推荐用4U的服务器来专门做数据库服务器,不仅仅是针对于mysql。

③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到了高端服务器基本上内存都超过了16G。


二、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。 对MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。 由于my.cnf文件的优化设置是与服务器硬件配置息息相关的, 因而我们指定一个假想的服务器硬件环境:CPU: 2颗Intel Xeon 2.4GHz 内存: 4GB DDR 硬盘: SCSI 73GB(很常见的2U服务器 ) 。
下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:

  1. [client]
  2. default-character-set=utf8mb4
  3. #mysqlde utf8字符集默认为3位的,不支持emoji表情及部分不常见的汉字,故推荐使用utf8mb4
  4. [mysql]
  5. default-character-set=utf8mb4
  6. [mysqld]
  7. skip-locking
  8. #避免MySQL的外部锁定,减少出错几率增强稳定性。
  9. #skip-name-resolve
  10. # 禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
  11. # 因为docker官方的mysql的dockerfile中有一段代码:echo '[mysqld]\nskip-host-cache\nskip-name-resolve' > /etc/mysql/conf.d/docker.cnf将这个配置写入另一个文件,这里咱们就不用写了,docker默认解析docker name或者service为ip,这样mysql就不用解析了
  12. back_log = 512
  13. # MySQL能有的连接数量。当主要MySQL线程在一个很短时间内得到非常多的连接请求,这就起作用,
  14. # 然后主线程花些时间(尽管很短)检查连接并且启动一个新线程。back_log值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中。
  15. # 如果期望在一个短时间内有很多连接,你需要增加它。也就是说,如果MySQL的连接数据达到max_connections时,新来的请求将会被存在堆栈中,
  16. # 以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。
  17. # 另外,这值(back_log)限于您的操作系统对到来的TCP/IP连接的侦听队列的大小。
  18. # 你的操作系统在这个队列大小上有它自己的限制(可以检查你的OS文档找出这个变量的最大值),试图设定back_log高于你的操作系统的限制将是无效的。默认值为50,对于Linux系统推荐设置为小于512的整数。
  19. key_buffer_size = 64M
  20. # 这是mysql优化中非常重要的一项配置
  21. # 指定用于索引的缓冲区大小,增加它可得到更好处理的索引(对所有读和多重写)。注意:该参数值设置的过大反而会是服务器整体效率降低
  22. # 默认值是16M,对于内存在4GB左右的服务器该参数可设置为384M或512M。
  23. # 想要知道key_buffer_size设置是否合理,通过命令show global status like 'key_read%';来查看Key_read_requests(索引请求次数)和Key_reads(从i/o中读取数据,也就是未命中索引),
  24. # 计算索引未命中缓存的概率:key_cache_miss_rate = Key_reads / Key_read_requests * 100%,至少是1:100,1:1000更好,比如我的key_cache_miss_rate = 15754 / 26831941 * 100% = 1/1700,也就是说1700个中只有一个请求直接读取硬盘
  25. # 如果key_cache_miss_rate在0.01%以下的话,key_buffer_size分配的过多,可以适当减少。
  26. # MySQL服务器还提供了key_blocks_*参数:show global status like 'key_blocks_u%';
  27. # Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。
  28. # 比较理想的设置:Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% < 80%
  29. max_connections = 1500
  30. # MySQL的最大连接数,默认是100,测试开过1万个连接数,并将他们持久化,内存增加了一个多G,由此算出一个连接大概为100+K
  31. # 如果服务器的并发连接请求量比较大,建议调高此值,以增加并行连接数量,当然这建立在机器能支撑的情况下,因为如果连接数越多,介于MySQL会为每个连接提供连接缓冲区,就会开销越多的内存,所以要适当调整该值,不能盲目提高设值。可以过'conn%'通配符查看当前状态的连接数量,以定夺该值的大小。
  32. # 比较理想的设置应该是max_used_connections / max_connections * 100% ≈ 80%,当发现这一比例在10%以下的话,说明最大连接数设置的过高了
  33. # 查看最大的连接数:SHOW VARIABLES LIKE "max_connections";
  34. # 查看已使用的最大连接:SHOW GLOBAL STATUS LIKE 'max_used_connections';
  35. # 显示连接相关的设置:SHOW STATUS LIKE '%connect%';
  36. # 显示当前正在执行的mysql连接:SHOW PROCESSLIST
  37. innodb_buffer_pool_size = 128M
  38. # InnoDB使用一个缓冲池来保存索引和原始数据, 默认值为128M
  39. # 这里你设置越大,你在存取表里面数据时所需要的磁盘I/O越少.
  40. # 在一个独立使用的数据库服务器上,你可以设置这个变量到服务器物理内存大小的80%即5-6GB(8GB内存),20-25GB(32GB内存),100-120GB(128GB内存),注意这是在独立数据库服务器中推荐的设置
  41. # 不要设置过大,否则,会导致systemswap空间被占用,导致操作系统变慢,从而减低sql查询的效率。
  42. # 注意在32位系统上你每个进程可能被限制在 2-3.5G 用户层面内存限制,所以不要设置的太高.
  43. query_cache_size = 0
  44. # MySQL的查询缓冲大小(从4.0.1开始,MySQL提供了查询缓冲机制)使用查询缓冲,MySQL 5.6以后的默认值为0MySQLSELECT语句和查询结果存放在缓冲区中,
  45. # query cache(查询缓存)是一个众所周知的瓶颈,甚至在并发并不多的时候也是如此。 最佳选项是将其从一开始就停用,设置query_cache_size = 0(MySQL 5.6以后的默认值)并利用其他方法加速查询:优化索引、增加拷贝分散负载或者启用额外的缓存(比如memcacheredis)。
  46. # 打开query cacheQcache)对读和写都会带来额外的消耗:a、读查询开始之前必须检查是否命中缓存。b、如果读查询可以缓存,那么执行完之后会写入缓存。 c、当向某个表写入数据的时候,必须将这个表所有的缓存设置为失效
  47. # 缓存存放在一个引用表中,通过一个哈希值引用,这个哈希值包括查询本身,数据库,客户端协议的版本等,任何字符上的不同,例如空格,注释都会导致缓存不命中。
  48. # 通过命令:show status like '%query_cache%';查看查询缓存相关设置:
  49. # # have_query_cache:是否有此功能
  50. # # query_cache_limit:允许 Cache 的单条 Query 结果集的最大容量,默认是1MB,超过此参数设置的 Query 结果集将不会被 Cache
  51. # # query_cache_min_res_unit:设置 Query Cache 中每次分配内存的最小空间大小,也就是每个 QueryCache 最小占用的内存空间大小
  52. # # uery_cache_size:设置 Query Cache 所使用的内存大小,默认值为0,大小必须是1024的整数倍,如果不是整数倍,MySQL 会自动调整降低最小量以达到1024的倍数
  53. # # query_cache_type:控制 Query Cache 功能的开关,可以设置为0(OFF),1(ON)和2(DEMAND)三种,意义分别如下:
  54. # # # 0(OFF):关闭 Query Cache 功能,任何情况下都不会使用 Query Cache
  55. # # # 1(ON):开启 Query Cache 功能,但是当 SELECT 语句中使用的 SQL_NO_CACHE 提示后,将不使用Query Cache
  56. # # # 2(DEMAND):开启 Query Cache 功能,但是只有当 SELECT 语句中使用了 SQL_CACHE 提示后,才使用 Query Cache
  57. # # query_cache_wlock_invalidate:控制当有写锁定发生在表上的时刻是否先失效该表相关的 Query Cache,如果设置为 1(TRUE),则在写锁定的同时将失效该表相关的所有 Query Cache,如果设置为0(FALSE)则在锁定时刻仍然允许读取该表相关的 Query Cache
  58. # 通过命令:show status like ‘%Qcache%’;查看查询缓存使用状态值:
  59. # # Qcache_free_blocks:目前还处于空闲状态的 Query Cache 中内存 Block 数目
  60. # # Qcache_free_memory:目前还处于空闲状态的 Query Cache 内存总量
  61. # # Qcache_hitsQuery Cache 命中次数
  62. # # Qcache_inserts:向 Query Cache 中插入新的 Query Cache 的次数,也就是没有命中的次数
  63. # # Qcache_lowmem_prunes:当 Query Cache 内存容量不够,需要从中删除老的 Query Cache 以给新的 Cache 对象使用的次数
  64. # # Qcache_not_cached:没有被 CacheSQL 数,包括无法被 CacheSQL 以及由于 query_cache_type 设置的不会被 CacheSQL
  65. # # Qcache_queries_in_cache:目前在 Query Cache 中的 SQL 数量
  66. # # Qcache_total_blocksQuery Cache 中总的 Block 数量
  67. # 如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,且Qcache_free_memory值很小,此时需要增加缓冲大小;
  68. # 如果Qcache_hits的值不大,且Qcache_free_memory值较大,则表明你的查询重复率很低,查询缓存不适合你当前系统,这种情况下使用查询缓冲反而会影响效率,可以通过设置query_cache_size = 0或者query_cache_type 来关闭查询缓存。
  69. # Query Cache 的大小设置超过256MB,这也是业界比较常用的做法。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲
  70. max_connect_errors = 6000
  71. # 对于同一主机,如果有超出该参数值个数的中断错误连接,则该主机将被禁止连接。如需对该主机进行解禁,执行:FLUSH HOST。防止黑客
  72. open_files_limit = 65535
  73. # MySQL打开的文件描述符限制,默认最小1024;当open_files_limit没有被配置的时候,比较max_connections*5ulimit -n的值,哪个大用哪个,
  74. # 当open_file_limit被配置的时候,比较open_files_limitmax_connections*5的值,哪个大用哪个。
  75. table_open_cache = 128
  76. # MySQL每打开一个表,都会读入一些数据到table_open_cache缓存中,当MySQL在这个缓存中找不到相应信息时,才会去磁盘上读取。默认值64
  77. # 假定系统有200个并发连接,则需将此参数设置为200*N(N为每个连接所需的文件描述符数目);
  78. # 当把table_open_cache设置为很大时,如果系统处理不了那么多文件描述符,那么就会出现客户端失效,连接不上
  79. max_allowed_packet = 4M
  80. # 接受的数据包大小;增加该变量的值十分安全,这是因为仅当需要时才会分配额外内存。例如,仅当你发出长查询或MySQLd必须返回大的结果行时MySQLd才会分配更多内存。
  81. # 该变量之所以取较小默认值是一种预防措施,以捕获客户端和服务器之间的错误信息包,并确保不会因偶然使用大的信息包而导致内存溢出。
  82. binlog_cache_size = 1M
  83. # 一个事务,在没有提交的时候,产生的日志,记录到Cache中;等到事务提交需要提交的时候,则把日志持久化到磁盘。默认binlog_cache_size大小32K
  84. max_heap_table_size = 8M
  85. # 定义了用户可以创建的内存表(memory table)的大小。这个值用来计算内存表的最大行数值。这个变量支持动态改变
  86. tmp_table_size = 16M
  87. # MySQLheap(堆积)表缓冲大小。所有联合在一个DML指令内完成,并且大多数联合甚至可以不用临时表即可以完成。
  88. # 大多数临时表是基于内存的(HEAP)表。具有大的记录长度的临时表 (所有列的长度的和)或包含BLOB列的表存储在硬盘上。
  89. # 如果某个内部heap(堆积)表大小超过tmp_table_sizeMySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。还可以通过设置tmp_table_size选项来增加临时表的大小。也就是说,如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果
  90. read_buffer_size = 2M
  91. # MySQL读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySQL会为它分配一段内存缓冲区。read_buffer_size变量控制这一缓冲区的大小。
  92. # 如果对表的顺序扫描请求非常频繁,并且你认为频繁扫描进行得太慢,可以通过增加该变量值以及内存缓冲区大小提高其性能
  93. read_rnd_buffer_size = 8M
  94. # MySQL的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,
  95. # MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大
  96. sort_buffer_size = 8M
  97. # MySQL执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。
  98. # 如果不能,可以尝试增加sort_buffer_size变量的大小
  99. join_buffer_size = 8M
  100. # 联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享
  101. thread_cache_size = 8
  102. # 这个值(默认8)表示可以重新利用保存在缓存中线程的数量,当断开连接时如果缓存中还有空间,那么客户端的线程将被放到缓存中,
  103. # 如果线程重新被请求,那么请求将从缓存中读取,如果缓存中是空的或者是新的请求,那么这个线程将被重新创建,如果有很多新的线程,
  104. # 增加这个值可以改善系统性能.通过比较ConnectionsThreads_created状态的变量,可以看到这个变量的作用。(–>表示要调整的值)
  105. # 根据物理内存设置规则如下:
  106. # 1G —> 8
  107. # 2G —> 16
  108. # 3G —> 32
  109. # 大于3G —> 64
  110. query_cache_limit = 2M
  111. #指定单个查询能够使用的缓冲区大小,默认1M
  112. ft_min_word_len = 4
  113. # 分词词汇最小长度,默认4
  114. transaction_isolation = REPEATABLE-READ
  115. # MySQL支持4种事务隔离级别,他们分别是:
  116. # READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, SERIALIZABLE.
  117. # 如没有指定,MySQL默认采用的是REPEATABLE-READ,ORACLE默认的是READ-COMMITTED
  118. log_bin = mysql-bin
  119. binlog_format = mixed
  120. expire_logs_days = 30 #超过30天的binlog删除
  121. log_error = /data/mysql/mysql-error.log #错误日志路径
  122. slow_query_log = 1
  123. long_query_time = 1 #慢查询时间 超过1秒则为慢查询
  124. slow_query_log_file = /data/mysql/mysql-slow.log
  125. performance_schema = 0
  126. explicit_defaults_for_timestamp
  127. #lower_case_table_names = 1 #不区分大小写
  128. skip-external-locking #MySQL选项以避免外部锁定。该选项默认开启
  129. default-storage-engine = InnoDB #默认存储引擎
  130. innodb_file_per_table = 1
  131. # InnoDB为独立表空间模式,每个数据库的每个表都会生成一个数据空间
  132. # 独立表空间优点:
  133. # 1.每个表都有自已独立的表空间。
  134. # 2.每个表的数据和索引都会存在自已的表空间中。
  135. # 3.可以实现单表在不同的数据库中移动。
  136. # 4.空间可以回收(除drop table操作处,表空不能自已回收)
  137. # 缺点:
  138. # 单表增加过大,如超过100G
  139. # 结论:
  140. # 共享表空间在Insert操作上少有优势。其它都没独立表空间表现好。当启用独立表空间时,请合理调整:innodb_open_files
  141. innodb_open_files = 500
  142. # 限制Innodb能打开的表的数据,如果库里的表特别多的情况,请增加这个。这个值默认是300
  143. innodb_write_io_threads = 4
  144. innodb_read_io_threads = 4
  145. # innodb使用后台线程处理数据页上的读写 I/O(输入输出)请求,根据你的 CPU 核数来更改,默认是4
  146. # 注:这两个参数不支持动态改变,需要把该参数加入到my.cnf里,修改完后重启MySQL服务,允许值的范围从 1-64
  147. innodb_thread_concurrency = 0
  148. # 默认设置为 0,表示不限制并发数,这里推荐设置为0,更好去发挥CPU多核处理能力,提高并发量
  149. innodb_purge_threads = 1
  150. # InnoDB中的清除操作是一类定期回收无用数据的操作。在之前的几个版本中,清除操作是主线程的一部分,这意味着运行时它可能会堵塞其它的数据库操作。
  151. # 从MySQL5.5.X版本开始,该操作运行于独立的线程中,并支持更多的并发数。用户可通过设置innodb_purge_threads配置参数来选择清除操作是否使用单
  152. # 独线程,默认情况下参数设置为0(不使用单独线程),设置为 1 时表示使用单独的清除线程。建议为1
  153. innodb_flush_log_at_trx_commit = 2
  154. # 0:如果innodb_flush_log_at_trx_commit的值为0,log buffer每秒就会被刷写日志文件到磁盘,提交事务的时候不做任何操作(执行是由mysql的master thread线程来执行的。
  155. # 主线程中每秒会将重做日志缓冲写入磁盘的重做日志文件(REDO LOG)中。不论事务是否已经提交)默认的日志文件是ib_logfile0,ib_logfile1
  156. # 1:当设为默认值1的时候,每次提交事务的时候,都会将log buffer刷写到日志。
  157. # 2:如果设为2,每次提交事务都会写日志,但并不会执行刷的操作。每秒定时会刷到日志文件。要注意的是,并不能保证100%每秒一定都会刷到磁盘,这要取决于进程的调度。
  158. # 每次事务提交的时候将数据写入事务日志,而这里的写入仅是调用了文件系统的写入操作,而文件系统是有 缓存的,所以这个写入并不能保证数据已经写入到物理磁盘
  159. # 默认值1是为了保证完整的ACID。当然,你可以将这个配置项设为1以外的值来换取更高的性能,但是在系统崩溃的时候,你将会丢失1秒的数据。
  160. # 设为0的话,mysqld进程崩溃的时候,就会丢失最后1秒的事务。设为2,只有在操作系统崩溃或者断电的时候才会丢失最后1秒的数据。InnoDB在做恢复的时候会忽略这个值。
  161. # 总结
  162. # 设为1当然是最安全的,但性能页是最差的(相对其他两个参数而言,但不是不能接受)。如果对数据一致性和完整性要求不高,完全可以设为2,如果只最求性能,例如高并发写的日志服务器,设为0来获得更高性能
  163. innodb_log_buffer_size = 4M
  164. # 此参数确定些日志文件所用的内存大小,以M为单位。缓冲区更大能提高性能,但意外的故障将会丢失数据。MySQL开发人员建议设置为1-8M之间
  165. innodb_log_file_size = 32M
  166. # 此参数确定数据日志文件的大小,更大的设置可以提高性能,但也会增加恢复故障数据库所需的时间
  167. innodb_log_files_in_group = 3
  168. # 为提高性能,MySQL可以以循环方式将日志文件写到多个文件。推荐设置为3
  169. innodb_max_dirty_pages_pct = 90
  170. # innodb主线程刷新缓存池中的数据,使脏数据比例小于90%
  171. innodb_lock_wait_timeout = 120
  172. # InnoDB事务在被回滚之前可以等待一个锁定的超时秒数。InnoDB在它自己的锁定表中自动检测事务死锁并且回滚事务。InnoDB用LOCK TABLES语句注意到锁定设置。默认值是50秒
  173. bulk_insert_buffer_size = 8M
  174. # 批量插入缓存大小, 这个参数是针对MyISAM存储引擎来说的。适用于在一次性插入100-1000+条记录时, 提高效率。默认值是8M。可以针对数据量的大小,翻倍增加。
  175. myisam_sort_buffer_size = 8M
  176. # MyISAM设置恢复表之时使用的缓冲区的尺寸,当在REPAIR TABLE或用CREATE INDEX创建索引或ALTER TABLE过程中排序 MyISAM索引分配的缓冲区
  177. myisam_max_sort_file_size = 10G
  178. # 如果临时文件会变得超过索引,不要使用快速排序索引方法来创建一个索引。注释:这个参数以字节的形式给出
  179. myisam_repair_threads = 1
  180. # 如果该值大于1,在Repair by sorting过程中并行创建MyISAM表索引(每个索引在自己的线程内)
  181. interactive_timeout = 28800
  182. # 服务器关闭交互式连接前等待活动的秒数。交互式客户端定义为在mysql_real_connect()中使用CLIENT_INTERACTIVE选项的客户端。默认值:28800秒(8小时)
  183. wait_timeout = 28800
  184. # 服务器关闭非交互连接之前等待活动的秒数。在线程启动时,根据全局wait_timeout值或全局interactive_timeout值初始化会话wait_timeout值,
  185. # 取决于客户端类型(由mysql_real_connect()的连接选项CLIENT_INTERACTIVE定义)。参数默认值:28800秒(8小时)
  186. # MySQL服务器所支持的最大连接数是有上限的,因为每个连接的建立都会消耗内存,因此我们希望客户端在连接到MySQL Server处理完相应的操作后,
  187. # 应该断开连接并释放占用的内存。如果你的MySQL Server有大量的闲置连接,他们不仅会白白消耗内存,而且如果连接一直在累加而不断开,
  188. # 最终肯定会达到MySQL Server的连接上限数,这会报'too many connections'的错误。对于wait_timeout的值设定,应该根据系统的运行情况来判断。
  189. # 在系统运行一段时间后,可以通过show processlist命令查看当前系统的连接状态,如果发现有大量的sleep状态的连接进程,则说明该参数设置的过大,
  190. # 可以进行适当的调整小些。要同时设置interactive_timeout和wait_timeout才会生效。
  191. [mysqldump]
  192. quick
  193. max_allowed_packet = 16M #服务器发送和接受的最大包长度
  194. [myisamchk]
  195. key_buffer_size = 8M
  196. sort_buffer_size = 8M
  197. read_buffer = 4M
  198. write_buffer = 4M


总结:mysql配置项的优化是一件非常复杂且长期坚持的事情,因为不同的并发级别会导致某个配置项不符合当前的情况,所以希望能和大家一起持续关注着mysql的优化,也同样欢迎大家列出自己再mysql优化中遇到的各种坑,让大家学习和借鉴

猜你喜欢

转载自blog.csdn.net/qq_28929589/article/details/80918051