RGBD-SLAM学习3

版权声明:学习记录~ https://blog.csdn.net/robinhjwy/article/details/79211927

继续跟着高博的博客学习,到了第三篇:
http://www.cnblogs.com/gaoxiang12/p/4659805.html

第三篇其实是分了两个部分:一个就是将产生点云这个功能封装成一个库;另外一个就是将图像匹配得位姿变换。

将产生点云功能封装成一个库:
首先说一下,一个程序编译链接之后,并不一定都生成可执行程序,有的是生成了库,以备其他程序调用。所以这两个有点并行的意味。首先,一个库要有头文件和库文件:
头文件slamBase.h,放在include文件夹中:
这里写图片描述

//
// Created by robin on 18-1-29.
//

//# pragma once

// 各种头文件
// C++标准库
#include <fstream>
#include <vector>
using namespace std;

// OpenCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

//PCL
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>

// 类型定义
typedef pcl::PointXYZRGBA PointT;
typedef pcl::PointCloud<PointT> PointCloud;

// 相机内参结构
struct CAMERA_INTRINSIC_PARAMETERS
{
    double cx, cy, fx, fy, scale;
};

// 函数接口
// image2PonitCloud 将rgb图转换为点云
PointCloud::Ptr image2PointCloud( cv::Mat& rgb, cv::Mat& depth, CAMERA_INTRINSIC_PARAMETERS& camera );

// point2dTo3d 将单个点从图像坐标转换为空间坐标
// input: 3维点Point3f (u,v,d),注意下这里比较奇葩,这个三维向量并不是坐标,没有什么实际意义,仅仅是一个数列,分别存储了像素坐标uv和深度数据d。用于给函数传递参数。
cv::Point3f point2dTo3d( cv::Point3f& point, CAMERA_INTRINSIC_PARAMETERS& camera );

内容很简单,就是定义了一个存储相机内参的结构体,定义了两个功能函数。

再看src中的源文件slamBase.cpp:

//
// Created by robin on 18-1-29.
//

#include "slamBase.h"

PointCloud::Ptr image2PointCloud( cv::Mat& rgb, cv::Mat& depth, CAMERA_INTRINSIC_PARAMETERS& camera )
{
    PointCloud::Ptr cloud ( new PointCloud );

    for (int m = 0; m < depth.rows; m++)
        for (int n=0; n < depth.cols; n++)
        {
            // 获取深度图中(m,n)处的值
            ushort d = depth.ptr<ushort>(m)[n];
            // d 可能没有值,若如此,跳过此点
            if (d == 0)
                continue;
            // d 存在值,则向点云增加一个点
            PointT p;

            // 计算这个点的空间坐标
            p.z = double(d) / camera.scale;
            p.x = (n - camera.cx) * p.z / camera.fx;
            p.y = (m - camera.cy) * p.z / camera.fy;

            // 从rgb图像中获取它的颜色
            // rgb是三通道的BGR格式图,所以按下面的顺序获取颜色
            p.b = rgb.ptr<uchar>(m)[n*3];
            p.g = rgb.ptr<uchar>(m)[n*3+1];
            p.r = rgb.ptr<uchar>(m)[n*3+2];

            // 把p加入到点云中
            cloud->points.push_back( p );
        }
    // 设置并保存点云
    cloud->height = 1;
    cloud->width = cloud->points.size();
    cloud->is_dense = false;

    return cloud;
}

cv::Point3f point2dTo3d( cv::Point3f& point, CAMERA_INTRINSIC_PARAMETERS& camera )
{
    cv::Point3f p; // 3D 点
    p.z = double( point.z ) / camera.scale;
    p.x = ( point.x - camera.cx) * p.z / camera.fx;
    p.y = ( point.y - camera.cy) * p.z / camera.fy;
    return p;
}

更明了,include进来头文件后,写两个功能函数的定义就好了。

主要说的是CMakeLists.txt的书写,按照动改哪个文件夹的文件就改动哪个文件夹中的CMakeLists.txt的原则,我们对src中的文件做了改动(写了个slamBase.cpp文件嘛~),所以要改动的也是src中的CMakeLists.txt。
首先,最直观的就是我们要生成一个库,那add_library和target_link_libraries不就好了么,生成库,并将库链接到依赖库上,所以在原来的CMakeLists.txt基础上增加两句:

# 增加库文件slamBase
add_library(slambase slamBase.cpp )
target_link_libraries(slambase ${OpenCV_LIBS} ${PCL_LIBS})

OK,这就好了~~~我们点击编译一下看看:
这里写图片描述
OK,没毛病,在lib中生成了一个名为libslambase.a的静态库文件。这里注意,虽然库文件名叫libslambase.a,但是这个库的名称还是叫slambase(add_library中定义的名字),所以后面使用时,链接此库的时候,就是用它的库名slambase,跟它的头文件名称slamBase.h,源文件名称slamBase.cpp,库文件名称libslambase.a都没关系!

第二部分,书写detectFeatures.cpp,
高博原始的代码:

#include<iostream>
#include "slamBase.h"
using namespace std;

// OpenCV 特征检测模块
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/calib3d/calib3d.hpp>

int main( int argc, char** argv )
{
    // 声明并从data文件夹里读取两个rgb与深度图
    cv::Mat rgb1 = cv::imread( "./data/rgb1.png");
    cv::Mat rgb2 = cv::imread( "./data/rgb2.png");
    cv::Mat depth1 = cv::imread( "./data/depth1.png", -1);
    cv::Mat depth2 = cv::imread( "./data/depth2.png", -1);

    // 声明特征提取器与描述子提取器
    cv::Ptr<cv::FeatureDetector> _detector;
    cv::Ptr<cv::DescriptorExtractor> _descriptor;

    // 构建提取器,默认两者都为sift
    // 构建sift, surf之前要初始化nonfree模块
    cv::initModule_nonfree();
    _detector = cv::FeatureDetector::create( "GridSIFT" );
    _descriptor = cv::DescriptorExtractor::create( "SIFT" );

    vector< cv::KeyPoint > kp1, kp2; //关键点
    _detector->detect( rgb1, kp1 );  //提取关键点
    _detector->detect( rgb2, kp2 );

    cout<<"Key points of two images: "<<kp1.size()<<", "<<kp2.size()<<endl;

    // 可视化, 显示关键点
    cv::Mat imgShow;
    cv::drawKeypoints( rgb1, kp1, imgShow, cv::Scalar::all(-1), cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS );
    cv::imshow( "keypoints", imgShow );
    cv::imwrite( "./data/keypoints.png", imgShow );
    cv::waitKey(0); //暂停等待一个按键

    // 计算描述子
    cv::Mat desp1, desp2;
    _descriptor->compute( rgb1, kp1, desp1 );
    _descriptor->compute( rgb2, kp2, desp2 );

    // 匹配描述子
    vector< cv::DMatch > matches; 
    cv::FlannBasedMatcher matcher;
    matcher.match( desp1, desp2, matches );
    cout<<"Find total "<<matches.size()<<" matches."<<endl;

    // 可视化:显示匹配的特征
    cv::Mat imgMatches;
    cv::drawMatches( rgb1, kp1, rgb2, kp2, matches, imgMatches );
    cv::imshow( "matches", imgMatches );
    cv::imwrite( "./data/matches.png", imgMatches );
    cv::waitKey( 0 );

    // 筛选匹配,把距离太大的去掉
    // 这里使用的准则是去掉大于四倍最小距离的匹配
    vector< cv::DMatch > goodMatches;
    double minDis = 9999;
    for ( size_t i=0; i<matches.size(); i++ )
    {
        if ( matches[i].distance < minDis )
            minDis = matches[i].distance;
    }

    for ( size_t i=0; i<matches.size(); i++ )
    {
        if (matches[i].distance < 4*minDis)
            goodMatches.push_back( matches[i] );
    }

    // 显示 good matches
    cout<<"good matches="<<goodMatches.size()<<endl;
    cv::drawMatches( rgb1, kp1, rgb2, kp2, goodMatches, imgMatches );
    cv::imshow( "good matches", imgMatches );
    cv::imwrite( "./data/good_matches.png", imgMatches );
    cv::waitKey(0);

    // 计算图像间的运动关系
    // 关键函数:cv::solvePnPRansac()
    // 为调用此函数准备必要的参数

    // 第一个帧的三维点
    vector<cv::Point3f> pts_obj;
    // 第二个帧的图像点
    vector< cv::Point2f > pts_img;

    // 相机内参
    CAMERA_INTRINSIC_PARAMETERS C;
    C.cx = 325.5;
    C.cy = 253.5;
    C.fx = 518.0;
    C.fy = 519.0;
    C.scale = 1000.0;

    for (size_t i=0; i<goodMatches.size(); i++)
    {
        // query 是第一个, train 是第二个
        cv::Point2f p = kp1[goodMatches[i].queryIdx].pt;
        // 获取d是要小心!x是向右的,y是向下的,所以y才是行,x是列!
        ushort d = depth1.ptr<ushort>( int(p.y) )[ int(p.x) ];
        if (d == 0)
            continue;
        pts_img.push_back( cv::Point2f( kp2[goodMatches[i].trainIdx].pt ) );

        // 将(u,v,d)转成(x,y,z)
        cv::Point3f pt ( p.x, p.y, d );
        cv::Point3f pd = point2dTo3d( pt, C );
        pts_obj.push_back( pd );
    }

    double camera_matrix_data[3][3] = {
        {C.fx, 0, C.cx},
        {0, C.fy, C.cy},
        {0, 0, 1}
    };

    // 构建相机矩阵
    cv::Mat cameraMatrix( 3, 3, CV_64F, camera_matrix_data );
    cv::Mat rvec, tvec, inliers;
    // 求解pnp
    cv::solvePnPRansac( pts_obj, pts_img, cameraMatrix, cv::Mat(), rvec, tvec, false, 100, 1.0, 100, inliers );

    cout<<"inliers: "<<inliers.rows<<endl;
    cout<<"R="<<rvec<<endl;
    cout<<"t="<<tvec<<endl;

    // 画出inliers匹配 
    vector< cv::DMatch > matchesShow;
    for (size_t i=0; i<inliers.rows; i++)
    {
        matchesShow.push_back( goodMatches[inliers.ptr<int>(i)[0]] );    
    }
    cv::drawMatches( rgb1, kp1, rgb2, kp2, matchesShow, imgMatches );
    cv::imshow( "inlier matches", imgMatches );
    cv::imwrite( "./data/inliers.png", imgMatches );
    cv::waitKey( 0 );

    return 0;
}

内容就不说了,逻辑清晰明了。注意一个点就是一定不要忘了将我们自己写的库的头文件include进来:#include "slamBase.h"

相应的还有CMakeLists.txt日常基本操作,添加:

扫描二维码关注公众号,回复: 3778291 查看本文章
# 增加特征点匹配的可执行文件
add_executable(detectfeacures detectFeacures.cpp )
# 链接上我们自己写的库
target_link_libraries(detectfeacures slambase )

OK,编译日常不通过。。。
首先第一个报错:

CMakeFiles\untitled1.dir/objects.a(main.cpp.obj): In function `_static_initialization_and_destruction_0':
C:/www/cpp/boost_1_62_0/boost/system/error_code.hpp:221: undefined reference to `boost::system::generic_category()'
C:/www/cpp/boost_1_62_0/boost/system/error_code.hpp:222: undefined reference to `boost::system::generic_category()'
C:/www/cpp/boost_1_62_0/boost/system/error_code.hpp:223: undefined reference to `boost::system::system_category()'

以上是解决后网上找的相同报错代码,所以文件名称可能不一样,但是不要在意细节。。。重点是那三个undefined reference:

undefined reference to `boost::system::generic_category()'
undefined reference to `boost::system::generic_category()'
undefined reference to `boost::system::system_category()'

未定义的引用?百度:
https://segmentfault.com/q/1010000007420187?sort=created
大概的原因就是没有链接boost_system库,按照引用答案更改:
首先在CMakeLists.txt中增加添加boost_system库语句:

# 由于需要链接boost库,所以需要find_package和include_directries进 boost库
find_package(Boost REQUIRED COMPONENTS system)
include_directories(${Boost_INCLUDE_DIRS})

之后还需要将编译的文件链接上,将target_link_libraries改为:

# 这里也是将boost库链接进来
target_link_libraries(detectfeacures ${Boost_LIBRARIES} slambase )

OK,继续编译。。。旧问题解决了,日常新问题,主要就是因为OpenCV日常更新后的变化导致,有三个:
1、声明特征提取器与描述子提取器的创建改为ORB了:

    // 声明特征提取器与描述子提取器
    cv::Ptr<cv::FeatureDetector> _detector = cv::ORB::create();;
    cv::Ptr<cv::DescriptorExtractor> _descriptor = cv::ORB::create();

2、匹配器matcher的创建要随动ORB,改成Brute Force match:

    //cv::FlannBasedMatcher matcher;  //这是高博的
    auto matcher = cv::DescriptorMatcher::create ( "BruteForce-Hamming" );

3、solvePnPRansac函数增加了confidence参数:算法产生有用结果的置信系数。具体改动就是增加一个参数值(这里就用函数默认值0.99好了。。。):

cv::solvePnPRansac( pts_obj, pts_img, cameraMatrix, cv::Mat(), rvec, tvec, false, 100, 1.0, 0.99, inliers );

这三个改动在高博博客里开头都有说,不过没找github上最新的,自己改改也有好处,参见了以下博客:
http://blog.csdn.net/wuliyanyan/article/details/55805238?locationNum=4&fps=1

改动完最终测试能跑通的代码:

//
// Created by robin on 18-1-29.
//

#include<iostream>
#include "slamBase.h"
using namespace std;

// OpenCV 特征检测模块
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>

int main( int argc, char** argv )
{
    // 声明并从data文件夹里读取两个rgb与深度图
    cv::Mat rgb1 = cv::imread( "../data/rgb1.png");
    cv::Mat rgb2 = cv::imread( "../data/rgb2.png");
    cv::Mat depth1 = cv::imread( "../data/depth1.png", -1);
    cv::Mat depth2 = cv::imread( "../data/depth2.png", -1);

    // 声明特征提取器与描述子提取器
    cv::Ptr<cv::FeatureDetector> _detector = cv::ORB::create();;
    cv::Ptr<cv::DescriptorExtractor> _descriptor = cv::ORB::create();

    vector< cv::KeyPoint > kp1, kp2; //关键点
    _detector->detect( rgb1, kp1 );  //提取关键点
    _detector->detect( rgb2, kp2 );

    cout<<"Key points of two images: "<<kp1.size()<<", "<<kp2.size()<<endl;

    // 可视化, 显示关键点
    cv::Mat imgShow;
    cv::drawKeypoints( rgb1, kp1, imgShow, cv::Scalar::all(-1), cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS );
    cv::imshow( "keypoints", imgShow );
    cv::imwrite( "../data/keypoints.png", imgShow );
    cv::waitKey(0); //暂停等待一个按键

    // 计算描述子
    cv::Mat desp1, desp2;
    _descriptor->compute( rgb1, kp1, desp1 );
    _descriptor->compute( rgb2, kp2, desp2 );

    // 匹配描述子
    vector< cv::DMatch > matches;
    //cv::FlannBasedMatcher matcher;
    auto matcher = cv::DescriptorMatcher::create ( "BruteForce-Hamming" );

    matcher->match( desp1, desp2, matches );
    cout<<"Find total "<<matches.size()<<" matches."<<endl;

    // 可视化:显示匹配的特征
    cv::Mat imgMatches;
    cv::drawMatches( rgb1, kp1, rgb2, kp2, matches, imgMatches );
    cv::imshow( "matches", imgMatches );
    cv::imwrite( "../data/matches.png", imgMatches );
    cv::waitKey( 0 );

    // 筛选匹配,把距离太大的去掉
    // 这里使用的准则是去掉大于四倍最小距离的匹配
    vector< cv::DMatch > goodMatches;
    //先将最小距离设置为一个很大的值
    double minDis = 9999;
    //然后遍历整个matches,找到最小的距离。
    for ( size_t i=0; i<matches.size(); i++ )
    {
        if ( matches[i].distance < minDis )
            minDis = matches[i].distance;
    }

    //遍历,小于最小距离四倍的匹配push进goodmatches。
    for ( size_t i=0; i<matches.size(); i++ )
    {
        if (matches[i].distance < 4*minDis)
            goodMatches.push_back( matches[i] );
    }

    // 显示 good matches
    cout<<"good matches="<<goodMatches.size()<<endl;
    cv::drawMatches( rgb1, kp1, rgb2, kp2, goodMatches, imgMatches );
    cv::imshow( "good matches", imgMatches );
    cv::imwrite( "../data/good_matches.png", imgMatches );
    cv::waitKey(0);

    // 计算图像间的运动关系
    // 关键函数:cv::solvePnPRansac()
    // 为调用此函数准备必要的参数

    // 第一个帧的三维点
    vector<cv::Point3f> pts_obj;
    // 第二个帧的图像点
    vector< cv::Point2f > pts_img;

    // 相机内参
    CAMERA_INTRINSIC_PARAMETERS C;
    C.cx = 325.5;
    C.cy = 253.5;
    C.fx = 518.0;
    C.fy = 519.0;
    C.scale = 1000.0;

    for (size_t i=0; i<goodMatches.size(); i++)
    {
        // query 是第一个关键点的索引, train 是第二个关键点的索引

        //获取3d点
        cv::Point2f p = kp1[goodMatches[i].queryIdx].pt;
        // 获取d时要小心!x是向右的,y是向下的,所以y才是行,x是列!
        ushort d = depth1.ptr<ushort>( int(p.y) )[ int(p.x) ];
        if (d == 0)
            continue;
        // 将(u,v,d)转成(x,y,z)
        cv::Point3f pt ( p.x, p.y, d );
        cv::Point3f pd = point2dTo3d( pt, C );
        pts_obj.push_back( pd );

        //获取2d点
        pts_img.push_back( cv::Point2f( kp2[goodMatches[i].trainIdx].pt ) );
    }

    double camera_matrix_data[3][3] = {
            {C.fx, 0, C.cx},
            {0, C.fy, C.cy},
            {0, 0, 1}
    };

    // 构建相机矩阵
    cv::Mat cameraMatrix( 3, 3, CV_64F, camera_matrix_data );

    cv::Mat rvec, tvec, inliers;

    // 求解pnp
    cv::solvePnPRansac( pts_obj, pts_img, cameraMatrix, cv::Mat(), rvec, tvec, false, 100, 1.0, 0.99, inliers );

    cout<<"inliers: "<<inliers.rows<<endl;
    cout<<"R="<<rvec<<endl;
    cout<<"t="<<tvec<<endl;

    // 画出inliers匹配
    vector< cv::DMatch > matchesShow;
    for (size_t i=0; i<inliers.rows; i++)
    {
        matchesShow.push_back( goodMatches[inliers.ptr<int>(i)[0]] );
    }
    cv::drawMatches( rgb1, kp1, rgb2, kp2, matchesShow, imgMatches );
    cv::imshow( "inlier matches", imgMatches );
    cv::imwrite( "../data/inliers.png", imgMatches );
    cv::waitKey( 0 );

    return 0;
}

猜你喜欢

转载自blog.csdn.net/robinhjwy/article/details/79211927
今日推荐