Linux网卡驱动pcnet32.c的注释(AM79C9*系列网卡的驱动)

很久之前读的网卡驱动源码,很多东西已经忘记了,最近面试被问道了网卡收数据包的全过程,只能答出一个很简单的过程,NAPI这种非常优秀的机制都没有想起来,很惭愧,重新复习了一下收包的过程,顺便把当时注释的代码贴出来,仅供参考。注释内容主要关注AM79C970A,为了方便阅读分成了几个代码块。

/* pcnet32.c: An AMD PCnet32 ethernet driver for linux. */
/*
 *  Copyright 1996-1999 Thomas Bogendoerfer
 *
    *   Derived from the lance driver written 1993,1994,1995 by Donald Becker.
 *
            Copyright 1993 United States Government as represented by the
            Director, National Security Agency.
 *
            This software may be used and distributed according to the terms
            of the GNU General Public License, incorporated herein by reference.
 *
            This driver is for PCnet32 and PCnetPCI based ethercards
 */
/**************************************************************************
 *  23 Oct, 2000.
 *  Fixed a few bugs, related to running the controller in 32bit mode.
 *
 *  Carsten Langgaard, [email protected]
 *  Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
 *
 *************************************************************************/

#define DRV_NAME    "pcnet32"
#ifdef CONFIG_PCNET32_NAPI
#define DRV_VERSION "1.34-NAPI"
#else
#define DRV_VERSION "1.34"
#endif
#define DRV_RELDATE "14.Aug.2007"
#define PFX     DRV_NAME ": "

static const char *const version =
    DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " [email protected]\n";

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>

#include <asm/dma.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/irq.h>

/*
 * PCI device identifiers for "new style" Linux PCI Device Drivers
 */
static struct pci_device_id pcnet32_pci_tbl[] = {
    { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE_HOME), },
    { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE), },

    /*
     * Adapters that were sold with IBM's RS/6000 or pSeries hardware have
     * the incorrect vendor id.
     */
    { PCI_DEVICE(PCI_VENDOR_ID_TRIDENT, PCI_DEVICE_ID_AMD_LANCE),
        .class = (PCI_CLASS_NETWORK_ETHERNET << 8), .class_mask = 0xffff00, },

         }  /* terminate list */
};

MODULE_DEVICE_TABLE(pci, pcnet32_pci_tbl);

static int cards_found;

/*
 * VLB I/O addresses
 */
static unsigned int pcnet32_portlist[] __initdata =
    { 0x300, 0x320, 0x340, 0x360, 0 };

static int pcnet32_debug = 0;
static int tx_start = 1;    /* Mapping -- 0:20, 1:64, 2:128, 3:~220 (depends on chip vers) */
static int pcnet32vlb;      /* check for VLB cards ? */

static struct net_device *pcnet32_dev;

static int max_interrupt_work = 2;
static int rx_copybreak = 200;

#define PCNET32_PORT_AUI      0x00
#define PCNET32_PORT_10BT     0x01
#define PCNET32_PORT_GPSI     0x02
#define PCNET32_PORT_MII      0x03

#define PCNET32_PORT_PORTSEL  0x03
#define PCNET32_PORT_ASEL     0x04
#define PCNET32_PORT_100      0x40
#define PCNET32_PORT_FD       0x80

#define PCNET32_DMA_MASK 0xffffffff

#define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ))
#define PCNET32_BLINK_TIMEOUT   (jiffies + (HZ/4))

/*
 * table to translate option values from tulip
 * to internal options
 */
static const unsigned char options_mapping[] = {
    PCNET32_PORT_ASEL,          /*  0 Auto-select      */
    PCNET32_PORT_AUI,           /*  1 BNC/AUI          */
    PCNET32_PORT_AUI,           /*  2 AUI/BNC          */
    PCNET32_PORT_ASEL,          /*  3 not supported    */
    PCNET32_PORT_10BT | PCNET32_PORT_FD,    /*  4 10baseT-FD       */
    PCNET32_PORT_ASEL,          /*  5 not supported    */
    PCNET32_PORT_ASEL,          /*  6 not supported    */
    PCNET32_PORT_ASEL,          /*  7 not supported    */
    PCNET32_PORT_ASEL,          /*  8 not supported    */
    PCNET32_PORT_MII,           /*  9 MII 10baseT      */
    PCNET32_PORT_MII | PCNET32_PORT_FD, /* 10 MII 10baseT-FD   */
    PCNET32_PORT_MII,           /* 11 MII (autosel)    */
    PCNET32_PORT_10BT,          /* 12 10BaseT          */
    PCNET32_PORT_MII | PCNET32_PORT_100,    /* 13 MII 100BaseTx    */
                        /* 14 MII 100BaseTx-FD */
    PCNET32_PORT_MII | PCNET32_PORT_100 | PCNET32_PORT_FD,
    PCNET32_PORT_ASEL           /* 15 not supported    */
};

static const char pcnet32_gstrings_test[][ETH_GSTRING_LEN] = {
    "Loopback test  (offline)"
};

#define PCNET32_TEST_LEN    ARRAY_SIZE(pcnet32_gstrings_test)

#define PCNET32_NUM_REGS 136

#define MAX_UNITS 8     /* More are supported, limit only on options */
static int options[MAX_UNITS];
static int full_duplex[MAX_UNITS];
static int homepna[MAX_UNITS];

/*
 *              Theory of Operation
 *
 * This driver uses the same software structure as the normal lance
 * driver. So look for a verbose description in lance.c. The differences
 * to the normal lance driver is the use of the 32bit mode of PCnet32
 * and PCnetPCI chips. Because these chips are 32bit chips, there is no
 * 16MB limitation and we don't need bounce buffers.
 */

/*
 * Set the number of Tx and Rx buffers, using Log_2(# buffers).
 * Reasonable default values are 4 Tx buffers, and 16 Rx buffers.
 * That translates to 2 (4 == 2^^2) and 4 (16 == 2^^4).
 */
#ifndef PCNET32_LOG_TX_BUFFERS
#define PCNET32_LOG_TX_BUFFERS      4
#define PCNET32_LOG_RX_BUFFERS      5
#define PCNET32_LOG_MAX_TX_BUFFERS  9   /* 2^9 == 512 */
#define PCNET32_LOG_MAX_RX_BUFFERS  9
#endif

#define TX_RING_SIZE        (1 << (PCNET32_LOG_TX_BUFFERS))
#define TX_MAX_RING_SIZE    (1 << (PCNET32_LOG_MAX_TX_BUFFERS))

#define RX_RING_SIZE        (1 << (PCNET32_LOG_RX_BUFFERS))
#define RX_MAX_RING_SIZE    (1 << (PCNET32_LOG_MAX_RX_BUFFERS))

#define PKT_BUF_SKB     1544
/* actual buffer length after being aligned */
#define PKT_BUF_SIZE        (PKT_BUF_SKB - NET_IP_ALIGN)
/* chip wants twos complement of the (aligned) buffer length */
#define NEG_BUF_SIZE        (NET_IP_ALIGN - PKT_BUF_SKB)

/* Offsets from base I/O address. */
#define PCNET32_WIO_RDP     0x10
#define PCNET32_WIO_RAP     0x12
#define PCNET32_WIO_RESET   0x14
#define PCNET32_WIO_BDP     0x16

#define PCNET32_DWIO_RDP    0x10
#define PCNET32_DWIO_RAP    0x14
#define PCNET32_DWIO_RESET  0x18
#define PCNET32_DWIO_BDP    0x1C

#define PCNET32_TOTAL_SIZE  0x20

#define CSR0        0
#define CSR0_INIT   0x1
#define CSR0_START  0x2
#define CSR0_STOP   0x4
#define CSR0_TXPOLL 0x8
#define CSR0_INTEN  0x40
#define CSR0_IDON   0x0100
#define CSR0_NORMAL (CSR0_START | CSR0_INTEN)
#define PCNET32_INIT_LOW    1
#define PCNET32_INIT_HIGH   2
#define CSR3        3
#define CSR4        4
#define CSR5        5
#define CSR5_SUSPEND    0x0001
#define CSR15       15
#define PCNET32_MC_FILTER   8

#define PCNET32_79C970A 0x2621

/* The PCNET32 Rx and Tx ring descriptors. */
struct pcnet32_rx_head {
    __le32  base;///存储该描述符对应的缓冲区的首地址
    __le16  buf_length; /* two`s complement of length */ ///二进制补码形式,缓冲区大小
    __le16  status;////每一位都有自己的含义,硬件手册有规定
    __le32  msg_length;
    __le32  reserved;
};

struct pcnet32_tx_head {
    __le32  base;
    __le16  length;     /* two`s complement of length */
    __le16  status;
    __le32  misc; ///用于错误标示和计数,详见硬件手册
    __le32  reserved;
};

//* The PCNET32 32-Bit initialization block, described in databook. */
/*
 *The Mode Register (CSR15) allows alteration of the chip’s operating 
 *parameters. The Mode field of the Initialization Block is copied directly 
 *into CSR15. Normal operation is the result of configuring the Mode field 
 *with all bits zero.
 */
struct pcnet32_init_block {
    __le16  mode;
    __le16  tlen_rlen;
    u8  phys_addr[6];
    __le16  reserved;
    __le32  filter[2];
    /* Receive and transmit ring base, along with extra bits. */
    __le32  rx_ring;
    __le32  tx_ring;
};
/* PCnet32 access functions */
struct pcnet32_access {
    u16 (*read_csr) (unsigned long, int);
    void    (*write_csr) (unsigned long, int, u16);
    u16 (*read_bcr) (unsigned long, int);
    void    (*write_bcr) (unsigned long, int, u16);
    u16 (*read_rap) (unsigned long);
    void    (*write_rap) (unsigned long, u16);
    void    (*reset) (unsigned long);
};

/*
 * The first field of pcnet32_private is read by the ethernet device
 * so the structure should be allocated using pci_alloc_consistent().
 */
struct pcnet32_private {
    struct pcnet32_init_block *init_block;
    /* The Tx and Rx ring entries must be aligned on 16-byte boundaries in 32bit mode. */
    struct pcnet32_rx_head  *rx_ring;
    struct pcnet32_tx_head  *tx_ring;
    dma_addr_t      init_dma_addr;/* DMA address of beginning of the init block,
                   returned by pci_alloc_consistent */
    struct pci_dev      *pci_dev;
    const char      *name;
    /* The saved address of a sent-in-place packet/buffer, for skfree(). */
    struct sk_buff      **tx_skbuff;
    struct sk_buff      **rx_skbuff;
    dma_addr_t      *tx_dma_addr;
    dma_addr_t      *rx_dma_addr;
    struct pcnet32_access   a;
    spinlock_t      lock;       /* Guard lock */
    unsigned int        cur_rx, cur_tx; /* The next free ring entry */
    unsigned int        rx_ring_size;   /* current rx ring size */
    unsigned int        tx_ring_size;   /* current tx ring size */
    unsigned int        rx_mod_mask;    /* rx ring modular mask */
    unsigned int        tx_mod_mask;    /* tx ring modular mask */
    unsigned short      rx_len_bits;
    unsigned short      tx_len_bits;
    dma_addr_t      rx_ring_dma_addr;
    dma_addr_t      tx_ring_dma_addr;
    unsigned int        dirty_rx,   /* ring entries to be freed. */
                dirty_tx;

    struct net_device   *dev;
    struct napi_struct  napi;
    char            tx_full;
    char            phycount;   /* number of phys found */
    int         options;
    ///shared_irq为1时表示irq是共享的(allow sharing the irq among several devices),为0表示不共享
    unsigned int        shared_irq:1,   /* shared irq possible */
                dxsuflo:1,   /* disable transmit stop on uflo */
                mii:1;      /* mii port available */
    struct net_device   *next;
    struct mii_if_info  mii_if;
    struct timer_list   watchdog_timer;
    struct timer_list   blink_timer;
    u32         msg_enable; /* debug message level */

    /* each bit indicates an available PHY */
    u32         phymask;
    unsigned short      chip_version;   /* which variant this is */
};

static int pcnet32_probe_pci(struct pci_dev *, const struct pci_device_id *);
static int pcnet32_probe1(unsigned long, int, struct pci_dev *);
static int pcnet32_open(struct net_device *);
static int pcnet32_init_ring(struct net_device *);
static int pcnet32_start_xmit(struct sk_buff *, struct net_device *);
static void pcnet32_tx_timeout(struct net_device *dev);
static irqreturn_t pcnet32_interrupt(int, void *);
static int pcnet32_close(struct net_device *);
static struct net_device_stats *pcnet32_get_stats(struct net_device *);
static void pcnet32_load_multicast(struct net_device *dev);
static void pcnet32_set_multicast_list(struct net_device *);
static int pcnet32_ioctl(struct net_device *, struct ifreq *, int);
static void pcnet32_watchdog(struct net_device *);
static int mdio_read(struct net_device *dev, int phy_id, int reg_num);
static void mdio_write(struct net_device *dev, int phy_id, int reg_num,
               int val);
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits);
static void pcnet32_ethtool_test(struct net_device *dev,
                 struct ethtool_test *eth_test, u64 * data);
static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1);
static int pcnet32_phys_id(struct net_device *dev, u32 data);
static void pcnet32_led_blink_callback(struct net_device *dev);
static int pcnet32_get_regs_len(struct net_device *dev);
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
                 void *ptr);
static void pcnet32_purge_tx_ring(struct net_device *dev);
static int pcnet32_alloc_ring(struct net_device *dev, char *name);
static void pcnet32_free_ring(struct net_device *dev);
static void pcnet32_check_media(struct net_device *dev, int verbose);
/*
工作在16-bit IO mode下,要读取第index个CSR的值,首先往RAP中写入index,然后再从RDP
中读取数据(此时读到的数据就是第index个CSR低16bit的数据),
*/
static u16 pcnet32_wio_read_csr(unsigned long addr, int index)
{
    outw(index, addr + PCNET32_WIO_RAP);
    return inw(addr + PCNET32_WIO_RDP);
}

/*工作在16-bit IO mode下,要往第index个CSR中写入数据,首先往RAP中写入index,然后
再往RDP中写入数据(数据会自动被写入CSR index),写入数据超过16bit的话,高位会被忽略掉*/
static void pcnet32_wio_write_csr(unsigned long addr, int index, u16 val)
{
    outw(index, addr + PCNET32_WIO_RAP);
    outw(val, addr + PCNET32_WIO_RDP);
}

/*
与static u16 pcnet32_wio_read_csr(unsigned long addr, int index)访问方
式类似,唯一不同的是读取数据是从BDP中读取
*/
static u16 pcnet32_wio_read_bcr(unsigned long addr, int index)
{
    outw(index, addr + PCNET32_WIO_RAP);
    return inw(addr + PCNET32_WIO_BDP);
}
/*
与static void pcnet32_wio_write_csr(unsigned long addr, int index, u16 
val)访问方式类似,唯一不同的是读取数据是从BDP中读取
*/
static void pcnet32_wio_write_bcr(unsigned long addr, int index, u16 val)
{
    outw(index, addr + PCNET32_WIO_RAP);
    outw(val, addr + PCNET32_WIO_BDP);
}


static u16 pcnet32_wio_read_rap(unsigned long addr)
{
    return inw(addr + PCNET32_WIO_RAP);
}

static void pcnet32_wio_write_rap(unsigned long addr, u16 val)
{
    outw(val, addr + PCNET32_WIO_RAP);
}

///Reset causes the device to cease operation and clear its internal logic.
static void pcnet32_wio_reset(unsigned long addr)
{
    ///read access to the RESET address (i.e., offset 0x14 for 16-bit I/O, offset 0x18 for 32-bit I/O),
    inw(addr + PCNET32_WIO_RESET);  /// addr + 0x14
}

static int pcnet32_wio_check(unsigned long addr)
{
    outw(88, addr + PCNET32_WIO_RAP);
    return (inw(addr + PCNET32_WIO_RAP) == 88);
}

static struct pcnet32_access pcnet32_wio = {
    .read_csr = pcnet32_wio_read_csr,
    .write_csr = pcnet32_wio_write_csr,
    .read_bcr = pcnet32_wio_read_bcr,
    .write_bcr = pcnet32_wio_write_bcr,
    .read_rap = pcnet32_wio_read_rap,
    .write_rap = pcnet32_wio_write_rap,
    .reset = pcnet32_wio_reset
};

static u16 pcnet32_dwio_read_csr(unsigned long addr, int index)
{
    outl(index, addr + PCNET32_DWIO_RAP);
    return (inl(addr + PCNET32_DWIO_RDP) & 0xffff);
}

static void pcnet32_dwio_write_csr(unsigned long addr, int index, u16 val)
{
    outl(index, addr + PCNET32_DWIO_RAP);
    outl(val, addr + PCNET32_DWIO_RDP);
}

static u16 pcnet32_dwio_read_bcr(unsigned long addr, int index)
{
    outl(index, addr + PCNET32_DWIO_RAP);
    return (inl(addr + PCNET32_DWIO_BDP) & 0xffff);
}

static void pcnet32_dwio_write_bcr(unsigned long addr, int index, u16 val)
{
    outl(index, addr + PCNET32_DWIO_RAP);
    outl(val, addr + PCNET32_DWIO_BDP);
}

static u16 pcnet32_dwio_read_rap(unsigned long addr)
{
    return (inl(addr + PCNET32_DWIO_RAP) & 0xffff);
}

static void pcnet32_dwio_write_rap(unsigned long addr, u16 val)
{
    outl(val, addr + PCNET32_DWIO_RAP);
}

static void pcnet32_dwio_reset(unsigned long addr)
{
    inl(addr + PCNET32_DWIO_RESET);
}

static int pcnet32_dwio_check(unsigned long addr)
{
    outl(88, addr + PCNET32_DWIO_RAP);
    return ((inl(addr + PCNET32_DWIO_RAP) & 0xffff) == 88);
}

static struct pcnet32_access pcnet32_dwio = {
    .read_csr = pcnet32_dwio_read_csr,
    .write_csr = pcnet32_dwio_write_csr,
    .read_bcr = pcnet32_dwio_read_bcr,
    .write_bcr = pcnet32_dwio_write_bcr,
    .read_rap = pcnet32_dwio_read_rap,
    .write_rap = pcnet32_dwio_write_rap,
    .reset = pcnet32_dwio_reset
};
static void pcnet32_netif_stop(struct net_device *dev)
{
#ifdef CONFIG_PCNET32_NAPI
    struct pcnet32_private *lp = netdev_priv(dev);
#endif
    dev->trans_start = jiffies;
#ifdef CONFIG_PCNET32_NAPI
    napi_disable(&lp->napi);
#endif
    netif_tx_disable(dev);
}

static void pcnet32_netif_start(struct net_device *dev)
{
#ifdef CONFIG_PCNET32_NAPI
    struct pcnet32_private *lp = netdev_priv(dev);
    ulong ioaddr = dev->base_addr;
    u16 val;
#endif
    netif_wake_queue(dev);
#ifdef CONFIG_PCNET32_NAPI
    val = lp->a.read_csr(ioaddr, CSR3);
    val &= 0x00ff;
    lp->a.write_csr(ioaddr, CSR3, val);
    napi_enable(&lp->napi);
#endif
}

/*
 * Allocate space for the new sized tx ring.
 * Free old resources
 * Save new resources.
 * Any failure keeps old resources.
 * Must be called with lp->lock held.
 */
static void pcnet32_realloc_tx_ring(struct net_device *dev,
                    struct pcnet32_private *lp,
                    unsigned int size)
{
    dma_addr_t new_ring_dma_addr;
    dma_addr_t *new_dma_addr_list;
    struct pcnet32_tx_head *new_tx_ring;
    struct sk_buff **new_skb_list;

    pcnet32_purge_tx_ring(dev);

    new_tx_ring = pci_alloc_consistent(lp->pci_dev,
                       sizeof(struct pcnet32_tx_head) *
                       (1 << size),
                       &new_ring_dma_addr);
    if (new_tx_ring == NULL) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Consistent memory allocation failed.\n",
                   dev->name);
        return;
    }
    memset(new_tx_ring, 0, sizeof(struct pcnet32_tx_head) * (1 << size));

    new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
                GFP_ATOMIC);
    if (!new_dma_addr_list) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Memory allocation failed.\n", dev->name);
        goto free_new_tx_ring;
    }

    new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
                GFP_ATOMIC);
    if (!new_skb_list) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Memory allocation failed.\n", dev->name);
        goto free_new_lists;
    }

    kfree(lp->tx_skbuff);
    kfree(lp->tx_dma_addr);
    pci_free_consistent(lp->pci_dev,
                sizeof(struct pcnet32_tx_head) *
                lp->tx_ring_size, lp->tx_ring,
                lp->tx_ring_dma_addr);

    lp->tx_ring_size = (1 << size);
    lp->tx_mod_mask = lp->tx_ring_size - 1;
    lp->tx_len_bits = (size << 12);
    lp->tx_ring = new_tx_ring;
    lp->tx_ring_dma_addr = new_ring_dma_addr;
    lp->tx_dma_addr = new_dma_addr_list;
    lp->tx_skbuff = new_skb_list;
    return;

    free_new_lists:
    kfree(new_dma_addr_list);
    free_new_tx_ring:
    pci_free_consistent(lp->pci_dev,
                sizeof(struct pcnet32_tx_head) *
                (1 << size),
                new_tx_ring,
                new_ring_dma_addr);
    return;
}

/*
 * Allocate space for the new sized rx ring.
 * Re-use old receive buffers.
 *   alloc extra buffers
 *   free unneeded buffers
 *   free unneeded buffers
 * Save new resources.
 * Any failure keeps old resources.
 * Must be called with lp->lock held.
 */
static void pcnet32_realloc_rx_ring(struct net_device *dev,
                    struct pcnet32_private *lp,
                    unsigned int size)
{
    dma_addr_t new_ring_dma_addr;
    dma_addr_t *new_dma_addr_list;
    struct pcnet32_rx_head *new_rx_ring;
    struct sk_buff **new_skb_list;
    int new, overlap;

    new_rx_ring = pci_alloc_consistent(lp->pci_dev,
                       sizeof(struct pcnet32_rx_head) *
                       (1 << size),
                       &new_ring_dma_addr);
    if (new_rx_ring == NULL) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Consistent memory allocation failed.\n",
                   dev->name);
        return;
    }
    memset(new_rx_ring, 0, sizeof(struct pcnet32_rx_head) * (1 << size));

    new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
                GFP_ATOMIC);
    if (!new_dma_addr_list) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Memory allocation failed.\n", dev->name);
        goto free_new_rx_ring;
    }

    new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
                GFP_ATOMIC);
    if (!new_skb_list) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR
                   "%s: Memory allocation failed.\n", dev->name);
        goto free_new_lists;
    }

    /* first copy the current receive buffers */
    overlap = min(size, lp->rx_ring_size);
    for (new = 0; new < overlap; new++) {
        new_rx_ring[new] = lp->rx_ring[new];
        new_dma_addr_list[new] = lp->rx_dma_addr[new];
        new_skb_list[new] = lp->rx_skbuff[new];
    }
    /* now allocate any new buffers needed */
    for (; new < size; new++ ) {
        struct sk_buff *rx_skbuff;
        new_skb_list[new] = dev_alloc_skb(PKT_BUF_SKB);
        if (!(rx_skbuff = new_skb_list[new])) {
            /* keep the original lists and buffers */
            if (netif_msg_drv(lp))
                printk(KERN_ERR
                       "%s: pcnet32_realloc_rx_ring dev_alloc_skb failed.\n",
                       dev->name);
            goto free_all_new;
        }
        skb_reserve(rx_skbuff, NET_IP_ALIGN);

        new_dma_addr_list[new] =
                pci_map_single(lp->pci_dev, rx_skbuff->data,
                       PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
        new_rx_ring[new].base = cpu_to_le32(new_dma_addr_list[new]);
        new_rx_ring[new].buf_length = cpu_to_le16(NEG_BUF_SIZE);
        new_rx_ring[new].status = cpu_to_le16(0x8000);
    }
    /* and free any unneeded buffers */
    for (; new < lp->rx_ring_size; new++) {
        if (lp->rx_skbuff[new]) {
            pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[new],
                     PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
            dev_kfree_skb(lp->rx_skbuff[new]);
        }
    }

    kfree(lp->rx_skbuff);
    kfree(lp->rx_dma_addr);
    pci_free_consistent(lp->pci_dev,
                sizeof(struct pcnet32_rx_head) *
                lp->rx_ring_size, lp->rx_ring,
                lp->rx_ring_dma_addr);

    lp->rx_ring_size = (1 << size);
    lp->rx_mod_mask = lp->rx_ring_size - 1;
    lp->rx_len_bits = (size << 4);
    lp->rx_ring = new_rx_ring;
    lp->rx_ring_dma_addr = new_ring_dma_addr;
    lp->rx_dma_addr = new_dma_addr_list;
    lp->rx_skbuff = new_skb_list;
    return;

    free_all_new:
    for (; --new >= lp->rx_ring_size; ) {
        if (new_skb_list[new]) {
            pci_unmap_single(lp->pci_dev, new_dma_addr_list[new],
                     PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
            dev_kfree_skb(new_skb_list[new]);
        }
    }
    kfree(new_skb_list);
    free_new_lists:
    kfree(new_dma_addr_list);
    free_new_rx_ring:
    pci_free_consistent(lp->pci_dev,
                sizeof(struct pcnet32_rx_head) *
                (1 << size),
                new_rx_ring,
                new_ring_dma_addr);
    return;
}
////释放分配给lp->rx_skbuff的DMA缓冲区,是发生错误后的处理函数
static void pcnet32_purge_rx_ring(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int i;

    /* free all allocated skbuffs */
    for (i = 0; i < lp->rx_ring_size; i++) {
        lp->rx_ring[i].status = 0;  /* CPU owns buffer */
        wmb();      /* Make sure adapter sees owner change */
        if (lp->rx_skbuff[i]) {
            pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[i],
                     PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
            dev_kfree_skb_any(lp->rx_skbuff[i]);
        }
        lp->rx_skbuff[i] = NULL;
        lp->rx_dma_addr[i] = 0;
    }
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * 第一步:关中断,我们平时说的关CPU的中断,指的应该是全关,而不是仅关掉一个吧
 * 第二步:进行中断处理(这个不是中断服务程序吧??
 * 第三部:中断处理结束后,开中断
 */
static void pcnet32_poll_controller(struct net_device *dev)
{
    disable_irq(dev->irq);
    pcnet32_interrupt(0, dev);
    enable_irq(dev->irq);
}
#endif

static int pcnet32_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    int r = -EOPNOTSUPP;

    if (lp->mii) {
        spin_lock_irqsave(&lp->lock, flags);
        mii_ethtool_gset(&lp->mii_if, cmd);
        spin_unlock_irqrestore(&lp->lock, flags);
        r = 0;
    }
    return r;
}

static int pcnet32_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    int r = -EOPNOTSUPP;

    if (lp->mii) {
        spin_lock_irqsave(&lp->lock, flags);
        r = mii_ethtool_sset(&lp->mii_if, cmd);
        spin_unlock_irqrestore(&lp->lock, flags);
    }
    return r;
}

///读取驱动的名字,版本,pci设备的名字(对于PCI总线即pdev->dev.bus_id),并放入ethtool_drvinfo结构体中
static void pcnet32_get_drvinfo(struct net_device *dev,
                struct ethtool_drvinfo *info)
{
    struct pcnet32_private *lp = netdev_priv(dev);

    strcpy(info->driver, DRV_NAME);
    strcpy(info->version, DRV_VERSION);
    if (lp->pci_dev)
        strcpy(info->bus_info, pci_name(lp->pci_dev));
    else
        sprintf(info->bus_info, "VLB 0x%lx", dev->base_addr);
}

///判断当前链接状态,正常返回0,异常返回1
static u32 pcnet32_get_link(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    int r;

    spin_lock_irqsave(&lp->lock, flags);
    if (lp->mii) {
        r = mii_link_ok(&lp->mii_if);
    } else if (lp->chip_version >= PCNET32_79C970A) {
        ulong ioaddr = dev->base_addr;  /* card base I/O address */
        r = (lp->a.read_bcr(ioaddr, 4) != 0xc0);  ////0xc0 = 1100 0000
    } else {    /* can not detect link on really old chips */
        r = 1;
    }
    spin_unlock_irqrestore(&lp->lock, flags);

    return r;
}

////返回dev的msg_enable(即debug level)
static u32 pcnet32_get_msglevel(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    return lp->msg_enable;
}

///把dev的msg_enable(即debug level)设置为value
static void pcnet32_set_msglevel(struct net_device *dev, u32 value)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    lp->msg_enable = value;
}
////因为VMware提供的虚拟网卡是AM79C970A,所以lp->mii=0,函数什么都没做,直接返回 -EOPNOTSUPP
static int pcnet32_nway_reset(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    int r = -EOPNOTSUPP;

    if (lp->mii) {
        spin_lock_irqsave(&lp->lock, flags);
        r = mii_nway_restart(&lp->mii_if);
        spin_unlock_irqrestore(&lp->lock, flags);
    }
    return r;
}

////把最大rx ring 和 tx ring大小的最大值和当前值
static void pcnet32_get_ringparam(struct net_device *dev,
                  struct ethtool_ringparam *ering)
{
    struct pcnet32_private *lp = netdev_priv(dev);

    ering->tx_max_pending = TX_MAX_RING_SIZE;
    ering->tx_pending = lp->tx_ring_size;
    ering->rx_max_pending = RX_MAX_RING_SIZE;
    ering->rx_pending = lp->rx_ring_size;
}

static int pcnet32_set_ringparam(struct net_device *dev,
                 struct ethtool_ringparam *ering)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    unsigned int size;
    ulong ioaddr = dev->base_addr;
    int i;

    if (ering->rx_mini_pending || ering->rx_jumbo_pending)
        return -EINVAL;

    if (netif_running(dev))
        pcnet32_netif_stop(dev);

    spin_lock_irqsave(&lp->lock, flags);
    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);   /* stop the chip */

    size = min(ering->tx_pending, (unsigned int)TX_MAX_RING_SIZE);

    /* set the minimum ring size to 4, to allow the loopback test to work
     * unchanged.
     */
    for (i = 2; i <= PCNET32_LOG_MAX_TX_BUFFERS; i++) {
        if (size <= (1 << i))
            break;
    }
    if ((1 << i) != lp->tx_ring_size)
        pcnet32_realloc_tx_ring(dev, lp, i);

    size = min(ering->rx_pending, (unsigned int)RX_MAX_RING_SIZE);
    for (i = 2; i <= PCNET32_LOG_MAX_RX_BUFFERS; i++) {
        if (size <= (1 << i))
            break;
    }
    if ((1 << i) != lp->rx_ring_size)
        pcnet32_realloc_rx_ring(dev, lp, i);

    lp->napi.weight = lp->rx_ring_size / 2;

    if (netif_running(dev)) {
        pcnet32_netif_start(dev);
        pcnet32_restart(dev, CSR0_NORMAL);
    }

    spin_unlock_irqrestore(&lp->lock, flags);

    if (netif_msg_drv(lp))
        printk(KERN_INFO
               "%s: Ring Param Settings: RX: %d, TX: %d\n", dev->name,
               lp->rx_ring_size, lp->tx_ring_size);

    return 0;
}

static void pcnet32_get_strings(struct net_device *dev, u32 stringset,
                u8 * data)
{
    memcpy(data, pcnet32_gstrings_test, sizeof(pcnet32_gstrings_test));
}

static int pcnet32_get_sset_count(struct net_device *dev, int sset)
{
    switch (sset) {
    case ETH_SS_TEST:
        return PCNET32_TEST_LEN;
    default:
        return -EOPNOTSUPP;
    }
}

static void pcnet32_ethtool_test(struct net_device *dev,
                 struct ethtool_test *test, u64 * data)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int rc;

    if (test->flags == ETH_TEST_FL_OFFLINE) {
        rc = pcnet32_loopback_test(dev, data);
        if (rc) {
            if (netif_msg_hw(lp))
                printk(KERN_DEBUG "%s: Loopback test failed.\n",
                       dev->name);
            test->flags |= ETH_TEST_FL_FAILED;
        } else if (netif_msg_hw(lp))
            printk(KERN_DEBUG "%s: Loopback test passed.\n",
                   dev->name);
    } else if (netif_msg_hw(lp))
        printk(KERN_DEBUG
               "%s: No tests to run (specify 'Offline' on ethtool).",
               dev->name);
}               /* end pcnet32_ethtool_test */

static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    struct pcnet32_access *a = &lp->a;  /* access to registers */
    ulong ioaddr = dev->base_addr;  /* card base I/O address */
    struct sk_buff *skb;    /* sk buff */
    int x, i;       /* counters */
    int numbuffs = 4;   /* number of TX/RX buffers and descs */
    u16 status = 0x8300;    /* TX ring status */
    __le16 teststatus;  /* test of ring status */
    int rc;         /* return code */
    int size;       /* size of packets */
    unsigned char *packet;  /* source packet data */
    static const int data_len = 60; /* length of source packets */
    unsigned long flags;
    unsigned long ticks;

    rc = 1;         /* default to fail */

    if (netif_running(dev))
#ifdef CONFIG_PCNET32_NAPI
        pcnet32_netif_stop(dev);
#else
        pcnet32_close(dev);
#endif

    spin_lock_irqsave(&lp->lock, flags);
    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);   /* stop the chip */

    numbuffs = min(numbuffs, (int)min(lp->rx_ring_size, lp->tx_ring_size));

    /* Reset the PCNET32 */
    lp->a.reset(ioaddr);
    lp->a.write_csr(ioaddr, CSR4, 0x0915);  /* auto tx pad */

    /* switch pcnet32 to 32bit mode */
    lp->a.write_bcr(ioaddr, 20, 2);

    /* purge & init rings but don't actually restart */
    pcnet32_restart(dev, 0x0000);

    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);   /* Set STOP bit */

    /* Initialize Transmit buffers. */
    size = data_len + 15;
    for (x = 0; x < numbuffs; x++) {
        if (!(skb = dev_alloc_skb(size))) {
            if (netif_msg_hw(lp))
                printk(KERN_DEBUG
                       "%s: Cannot allocate skb at line: %d!\n",
                       dev->name, __LINE__);
            goto clean_up;
        } else {
            packet = skb->data;
            skb_put(skb, size); /* create space for data */
            lp->tx_skbuff[x] = skb;
            lp->tx_ring[x].length = cpu_to_le16(-skb->len);
            lp->tx_ring[x].misc = 0;

            /* put DA and SA into the skb */
            for (i = 0; i < 6; i++)
                *packet++ = dev->dev_addr[i];
            for (i = 0; i < 6; i++)
                *packet++ = dev->dev_addr[i];
            /* type */
            *packet++ = 0x08;
            *packet++ = 0x06;
            /* packet number */
            *packet++ = x;
            /* fill packet with data */
            for (i = 0; i < data_len; i++)
                *packet++ = i;

            lp->tx_dma_addr[x] =
                pci_map_single(lp->pci_dev, skb->data, skb->len,
                       PCI_DMA_TODEVICE);
            lp->tx_ring[x].base = cpu_to_le32(lp->tx_dma_addr[x]);
            wmb();  /* Make sure owner changes after all others are visible */
            lp->tx_ring[x].status = cpu_to_le16(status);
        }
    }

    x = a->read_bcr(ioaddr, 32);    /* set internal loopback in BCR32 */
    a->write_bcr(ioaddr, 32, x | 0x0002);

    /* set int loopback in CSR15 */
    x = a->read_csr(ioaddr, CSR15) & 0xfffc;
    lp->a.write_csr(ioaddr, CSR15, x | 0x0044);

    teststatus = cpu_to_le16(0x8000);
    lp->a.write_csr(ioaddr, CSR0, CSR0_START);  /* Set STRT bit */

    /* Check status of descriptors */
    for (x = 0; x < numbuffs; x++) {
        ticks = 0;
        rmb();
        while ((lp->rx_ring[x].status & teststatus) && (ticks < 200)) {
            spin_unlock_irqrestore(&lp->lock, flags);
            msleep(1);
            spin_lock_irqsave(&lp->lock, flags);
            rmb();
            ticks++;
        }
        if (ticks == 200) {
            if (netif_msg_hw(lp))
                printk("%s: Desc %d failed to reset!\n",
                       dev->name, x);
            break;
        }
    }

    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);   /* Set STOP bit */
    wmb();
    if (netif_msg_hw(lp) && netif_msg_pktdata(lp)) {
        printk(KERN_DEBUG "%s: RX loopback packets:\n", dev->name);

        for (x = 0; x < numbuffs; x++) {
            printk(KERN_DEBUG "%s: Packet %d:\n", dev->name, x);
            skb = lp->rx_skbuff[x];
            for (i = 0; i < size; i++) {
                printk("%02x ", *(skb->data + i));
            }
            printk("\n");
        }
    }

    x = 0;
    rc = 0;
    while (x < numbuffs && !rc) {
        skb = lp->rx_skbuff[x];
        packet = lp->tx_skbuff[x]->data;
        for (i = 0; i < size; i++) {
            if (*(skb->data + i) != packet[i]) {
                if (netif_msg_hw(lp))
                    printk(KERN_DEBUG
                           "%s: Error in compare! %2x - %02x %02x\n",
                           dev->name, i, *(skb->data + i),
                           packet[i]);
                rc = 1;
                break;
            }
        }
        x++;
    }

      clean_up:
    *data1 = rc;
    pcnet32_purge_tx_ring(dev);

    x = a->read_csr(ioaddr, CSR15);
    a->write_csr(ioaddr, CSR15, (x & ~0x0044));    /* reset bits 6 and 2 */

    x = a->read_bcr(ioaddr, 32);    /* reset internal loopback */
    a->write_bcr(ioaddr, 32, (x & ~0x0002));

#ifdef CONFIG_PCNET32_NAPI
    if (netif_running(dev)) {
        pcnet32_netif_start(dev);
        pcnet32_restart(dev, CSR0_NORMAL);
    } else {
        pcnet32_purge_rx_ring(dev);
        lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */
    }
    spin_unlock_irqrestore(&lp->lock, flags);
#else
    if (netif_running(dev)) {
        spin_unlock_irqrestore(&lp->lock, flags);
        pcnet32_open(dev);
    } else {
        pcnet32_purge_rx_ring(dev);
        lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */
        spin_unlock_irqrestore(&lp->lock, flags);
    }
#endif

    return (rc);
}               /* end pcnet32_loopback_test  */
static void pcnet32_led_blink_callback(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    struct pcnet32_access *a = &lp->a;
    ulong ioaddr = dev->base_addr;
    unsigned long flags;
    int i;

    spin_lock_irqsave(&lp->lock, flags);
    for (i = 4; i < 8; i++) {
        a->write_bcr(ioaddr, i, a->read_bcr(ioaddr, i) ^ 0x4000);
    }
    spin_unlock_irqrestore(&lp->lock, flags);

    mod_timer(&lp->blink_timer, PCNET32_BLINK_TIMEOUT);
}

static int pcnet32_phys_id(struct net_device *dev, u32 data)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    struct pcnet32_access *a = &lp->a;
    ulong ioaddr = dev->base_addr;
    unsigned long flags;
    int i, regs[4];

    if (!lp->blink_timer.function) {
        init_timer(&lp->blink_timer);
        lp->blink_timer.function = (void *)pcnet32_led_blink_callback;
        lp->blink_timer.data = (unsigned long)dev;
    }

    /* Save the current value of the bcrs */
    spin_lock_irqsave(&lp->lock, flags);
    for (i = 4; i < 8; i++) {
        regs[i - 4] = a->read_bcr(ioaddr, i);
    }
    spin_unlock_irqrestore(&lp->lock, flags);

    mod_timer(&lp->blink_timer, jiffies);
    set_current_state(TASK_INTERRUPTIBLE);

    /* AV: the limit here makes no sense whatsoever */
    if ((!data) || (data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ)))
        data = (u32) (MAX_SCHEDULE_TIMEOUT / HZ);

    msleep_interruptible(data * 1000);
    del_timer_sync(&lp->blink_timer);

    /* Restore the original value of the bcrs */
    spin_lock_irqsave(&lp->lock, flags);
    for (i = 4; i < 8; i++) {
        a->write_bcr(ioaddr, i, regs[i - 4]);
    }
    spin_unlock_irqrestore(&lp->lock, flags);

    return 0;
}

/*
 * lp->lock must be held.
 */
static int pcnet32_suspend(struct net_device *dev, unsigned long *flags,
        int can_sleep)
{
    int csr5;
    struct pcnet32_private *lp = netdev_priv(dev);
    struct pcnet32_access *a = &lp->a;
    ulong ioaddr = dev->base_addr;
    int ticks;

    /* really old chips have to be stopped. */
    if (lp->chip_version < PCNET32_79C970A)
        return 0;

    /* set SUSPEND (SPND) - CSR5 bit 0 */
    csr5 = a->read_csr(ioaddr, CSR5);
    a->write_csr(ioaddr, CSR5, csr5 | CSR5_SUSPEND);

    /* poll waiting for bit to be set */
    ticks = 0;
    while (!(a->read_csr(ioaddr, CSR5) & CSR5_SUSPEND)) {
        spin_unlock_irqrestore(&lp->lock, *flags);
        if (can_sleep)
            msleep(1);
        else
            mdelay(1);
        spin_lock_irqsave(&lp->lock, *flags);
        ticks++;
        if (ticks > 200) {
            if (netif_msg_hw(lp))
                printk(KERN_DEBUG
                       "%s: Error getting into suspend!\n",
                       dev->name);
            return 0;
        }
    }
    return 1;
}

/*
 * process one receive descriptor entry
 */
////处理收到的一个descriptor entry,然后交给网络层
static void pcnet32_rx_entry(struct net_device *dev,
                 struct pcnet32_private *lp,
                 struct pcnet32_rx_head *rxp,
                 int entry)
{
    int status = (short)le16_to_cpu(rxp->status) >> 8;   //rxp = &lp->rx_ring[entry]
    int rx_in_place = 0;
    struct sk_buff *skb;
    short pkt_len;

    //D//他的意思应该是收到的数据包都应该视为独立的frame,不存在buffer chain,如果出现了,说明出错了
    //这里0x03表示STP位被置,即Start of Packet, ENP被置,即End of Packet
    if (status != 0x03) {   /* There was an error. */ //
        /*
         * There is a tricky error noted by John Murphy,
         * <[email protected]> to Russ Nelson: Even with full-sized
         * buffers it's possible for a jabber packet to use two
         * buffers, with only the last correctly noting the error.
         */
        // 下面的错误种类和位的对应关系让人有点迷茫,暂时不管
        if (status & 0x01)  /* Only count a general error at the */
            dev->stats.rx_errors++; /* end of a packet. */
        if (status & 0x20)  //DM//Start of Packet
            dev->stats.rx_frame_errors++;
        if (status & 0x10)
            dev->stats.rx_over_errors++;
        if (status & 0x08)
            dev->stats.rx_crc_errors++;
        if (status & 0x04)
            dev->stats.rx_fifo_errors++;
        return;
    }
    ///prob/ 不太明白这里为何要将数据长度减去4
    pkt_len = (le32_to_cpu(rxp->msg_length) & 0xfff) - 4;
    //DM// 帧长大约PKT_BUF_SIZE+4或者小于64字节的包都会被丢掉
    /* Discard oversize frames. */
    if (unlikely(pkt_len > PKT_BUF_SIZE)) {
        if (netif_msg_drv(lp))
            printk(KERN_ERR "%s: Impossible packet size %d!\n",
                   dev->name, pkt_len);
        dev->stats.rx_errors++;
        return;
    }
    if (pkt_len < 60) {
        if (netif_msg_rx_err(lp))
            printk(KERN_ERR "%s: Runt packet!\n", dev->name);
        dev->stats.rx_errors++;
        return;
    }
    /*
     *rx_copybreak默认值是200,insmod可传参数指定,推测意思应该是超过rx_copybreak
     *大小的frame,就进行切断处理
     *下面的if-else的功能:
     *如果pkt_len大于copybreak,则取消当前处理的sk_buff的dma映射,并将原来的 lp->
     *rx_skbuff[entry]指针指向一个新分配的 sk_buff(并使之对其,建立DMA映射),然后
     *处理原来的sk_buff,并交给网络层,如果不大于,则直接将其数据区拷贝到新的sk_buff,
     *处理后递交给网路层
     */
    if (pkt_len > rx_copybreak)
    {
        struct sk_buff *newskb;
        //// dev_alloc_skb --  allocate an skbuff for sending
        if ((newskb = dev_alloc_skb(PKT_BUF_SKB)))
        {
            /**DM
             * Increase the headroom of an empty &sk_buff by reducing the tail 
             * room. This is only allowed for an empty buffer.
             * sk_buff刚分配时只有tail room ,reserve后 前面的NET_IP_ALIGN字节变为 
             * head room。 是因为共有三个区(两者中间的是packet data),
             * 四个指针来分界
             */
            skb_reserve(newskb, NET_IP_ALIGN); ////使以太帧头部四字节对其
            skb = lp->rx_skbuff[entry];
            pci_unmap_single(lp->pci_dev,
                     lp->rx_dma_addr[entry],
                     PKT_BUF_SIZE,
                     PCI_DMA_FROMDEVICE);
            ///prob/ 使数据区向尾部扩张pkt_len个字节,不太明白为何要这样做
            skb_put(skb, pkt_len); 
            lp->rx_skbuff[entry] = newskb;
            lp->rx_dma_addr[entry] =
                        pci_map_single(lp->pci_dev,
                               newskb->data,
                               PKT_BUF_SIZE,
                               PCI_DMA_FROMDEVICE);
            rxp->base = cpu_to_le32(lp->rx_dma_addr[entry]);
            rx_in_place = 1;
        }
        else
            skb = NULL;
    }
     else
     {
        skb = dev_alloc_skb(pkt_len + NET_IP_ALIGN);
     }

    if (skb == NULL) {
        if (netif_msg_drv(lp))
            printk(KERN_ERR
                   "%s: Memory squeeze, dropping packet.\n",
                   dev->name);
        dev->stats.rx_dropped++;
        return;
    }
    skb->dev = dev;
    if (!rx_in_place) {
        skb_reserve(skb, NET_IP_ALIGN);
        skb_put(skb, pkt_len);  /* Make room */
        /*从设备到RAM的一次DMA数据传送完成之前设备驱动程序是不可以访问内存缓冲区的:
         *相反,如果有必要,在读缓冲区之前,驱动程序应该调用pci_dma_sync_single_for_
         *cpu()或dma_sync_single_for_cpu()使相应的硬件高速缓存行无效。在80x86体系结
         *构中,上述函数几乎不做任何事情,因为硬件高速缓存和DMA之间的一致性是由硬件来
         *维护的。
         *可以认为下面这句话就是为了维护一致性,
         */
        pci_dma_sync_single_for_cpu(lp->pci_dev,
                        lp->rx_dma_addr[entry],
                        pkt_len,
                        PCI_DMA_FROMDEVICE);
        ///skb_copy_to_linear_data下面函数的实现体只有一句话memcpy(skb->data, from, len);
        skb_copy_to_linear_data(skb,
                 (unsigned char *)(lp->rx_skbuff[entry]->data),
                 pkt_len);
        pci_dma_sync_single_for_device(lp->pci_dev,
                           lp->rx_dma_addr[entry],
                           pkt_len,
                           PCI_DMA_FROMDEVICE);
    }
    dev->stats.rx_bytes += skb->len;
    /*
     *(1)将skb->dev指向接收设备
     *(2)将skb->mac_header指向data(此时data就是指向mac起始地址)
     *(3)调用skb_pull(skb, ETH_HLEN)将skb->data后移14字节指向ip首部
     *(4)通过比较目的mac地址判断包的类型,并将skb->pkt_type赋值PACKET_BROADCAST
     *或PACKET_MULTICAST或者PACKET_OTHERHOST ,因为PACKET_HOST为0,所以是默认值,
     *HOST表示包的目的地址是本机
     *(5)最后判断协议类型,并返回(大部分情况下直接返回eth首部的protocol字段的值),
     *这个返回值被存在skb->protocol字段中
     */
    skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_PCNET32_NAPI
    /*
     *netif_receive_skb() is the main receive data processing 
     *function,把数据包交给上层协议,任务完成
    */
    netif_receive_skb(skb);
#else
    netif_rx(skb);
#endif
    dev->last_rx = jiffies;
    dev->stats.rx_packets++;
    return;
}

/*
 * 完成最多budge个包的接收,然后返回总共接收的包的数量,接收的包均会立刻交给网络层
 */
static int pcnet32_rx(struct net_device *dev, int budget)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    //cur_rx, cur_tx是The next free ring entry,rx_mod_mask是rx ring modular mask,取余操作
    int entry = lp->cur_rx & lp->rx_mod_mask;
    struct pcnet32_rx_head *rxp = &lp->rx_ring[entry];
    int npackets = 0;  //DM//记录已经处理的packet的数量

    /*由于此时网卡已经将收到的包塞入缓冲区,所以网卡要将own位清0,而own位是status的最
     *高位 ,所以,此时status的值将>0。
     *如果OWN位为1(此时status<0),那么表示网卡还没有放数据,此时根据手册,就不能再
     * 继续读下一个entry了。
     */
    /* If we own the next entry, it's a new packet. Send it up. */
    while (npackets < budget && (short)le16_to_cpu(rxp->status) >= 0) {
        ///处理当前的descriptor entry,并将数据递交给网络层
        pcnet32_rx_entry(dev, lp, rxp, entry);
        npackets += 1;
        /*
         * The docs say that the buffer length isn't touched, but Andrew
         * Boyd of QNX reports that some revs of the 79C965 clear it.
         */
        /*
         * prob/这里不太明白为何长度是个常数  1522  ,可能是因为rx descriptor的 
         * skb_buff的长度一直都是分配最大值PKT_BUF_SKB 1544,不过1544是错误的, 
         * 因为最大不能超过1518 
         */
         rxp->buf_length = cpu_to_le16(NEG_BUF_SIZE);

         //写内存屏障
        wmb();  
         /* Make sure owner changes after others are visible */
        rxp->status = cpu_to_le16(0x8000); //DM//把rxp的控制权还给controller
        ///处理下一个descriptor
        entry = (++lp->cur_rx) & lp->rx_mod_mask;
        rxp = &lp->rx_ring[entry];
    }

    return npackets;
}

/***
 * 1.释放已经发送的数据包的缓冲区
 * 2.检查错误,进行错误处理,如果发生overflow错误,则返回重置网卡信息(must_start=1)
 * 3.如果tx已经不是满的(也可能是空余的descriptor多余某个数值,后面的逻辑还不是很清晰)
 * 则置lp->tx_full=0,并通知网络子系统可以重洗启动数据包的发送了
 */
static int pcnet32_tx(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned int dirty_tx = lp->dirty_tx;
    int delta;
    int must_restart = 0;

    /*
     *检查错误,如果出现overflow错误,直接返回must_restart,反之释放已经tx_ring中已
     *经完成发送的descriptor的缓冲区
     */
    while (dirty_tx != lp->cur_tx) {
        int entry = dirty_tx & lp->tx_mod_mask;
        int status = (short)le16_to_cpu(lp->tx_ring[entry].status);

        if (status < 0)
            break;  /* It still hasn't been Txed */

        lp->tx_ring[entry].base = 0;
        ///ERR位为1,所以出现了错误,检查错误,该累加累加,该打印错误打印错误
        if (status & 0x4000) {
            /* There was a major error, log it. */
            ////prob/misc每一位具体干嘛的还不清楚,确定是 标识错误的
            int err_status = le32_to_cpu(lp->tx_ring[entry].misc);  
            dev->stats.tx_errors++;
            if (netif_msg_tx_err(lp))
                printk(KERN_ERR
                       "%s: Tx error status=%04x err_status=%08x\n",
                       dev->name, status,
                       err_status);
            if (err_status & 0x04000000)
                dev->stats.tx_aborted_errors++;
            if (err_status & 0x08000000)
                dev->stats.tx_carrier_errors++;
            if (err_status & 0x10000000)
                dev->stats.tx_window_errors++;
            ///prob/ dxsuflo=0,算not define吗
#ifndef DO_DXSUFLO
            if (err_status & 0x40000000) {
                dev->stats.tx_fifo_errors++;
                /* Ackk!  On FIFO errors the Tx unit is turned off! */
                /* Remove this verbosity later! */
                if (netif_msg_tx_err(lp))
                    printk(KERN_ERR
                           "%s: Tx FIFO error!\n",
                           dev->name);
                must_restart = 1;
            }
#else
            if (err_status & 0x40000000) {
                dev->stats.tx_fifo_errors++;
                if (!lp->dxsuflo) { /* If controller doesn't recover ... */
                    /* Ackk!  On FIFO errors the Tx unit is turned off! */
                    /* Remove this verbosity later! */
                    if (netif_msg_tx_err(lp))
                        printk(KERN_ERR
                               "%s: Tx FIFO error!\n",
                               dev->name);
                    must_restart = 1;
                }
            }
#endif
        } else {
            ///overflow error  or CRC error
            if (status & 0x1800)
                dev->stats.collisions++;
            dev->stats.tx_packets++;
        }

        /* We must free the original skb */
        ///释放sk_buff缓冲区(该sk_buff已经发送过了),取消DMA映射
        if (lp->tx_skbuff[entry]) {
            pci_unmap_single(lp->pci_dev,
                     lp->tx_dma_addr[entry],
                     lp->tx_skbuff[entry]->
                     len, PCI_DMA_TODEVICE);
            dev_kfree_skb_any(lp->tx_skbuff[entry]);
            lp->tx_skbuff[entry] = NULL;
            lp->tx_dma_addr[entry] = 0;
        }
        dirty_tx++;
    }
    ///prob/下面的判断逻辑看不懂
    delta = (lp->cur_tx - dirty_tx) & (lp->tx_mod_mask + lp->tx_ring_size);
    if (delta > lp->tx_ring_size) {
        if (netif_msg_drv(lp))
            printk(KERN_ERR
                   "%s: out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
                   dev->name, dirty_tx, lp->cur_tx,
                   lp->tx_full);
        dirty_tx += lp->tx_ring_size;
        delta -= lp->tx_ring_size;
    }

    ///prob/判断如果full不在成立(判断逻辑不明白),则重新置为未满
    if (lp->tx_full &&
        netif_queue_stopped(dev) &&
        delta < lp->tx_ring_size - 2) {
        /* The ring is no longer full, clear tbusy. */
        lp->tx_full = 0;
        netif_wake_queue(dev);
    }
    lp->dirty_tx = dirty_tx;

    return must_restart;
}

////函数体中只有开中断,而没有关中断,所以推测NAPI调用poll之前会自动关闭中断
////完成最多budget个包的接收处理后,返回接收的包的数量
#ifdef CONFIG_PCNET32_NAPI
static int pcnet32_poll(struct napi_struct *napi, int budget)
{
   /**DM
    * container_of - cast a member of a structure out to the containing structure
    * @ptr:        the pointer to the member.
    * @type:       the type of the container struct this is embedded in.
    * @member:     the name of the member within the struct.
    *
    */
    //DM// 获取lp地址
    struct pcnet32_private *lp = container_of(napi, struct pcnet32_private, napi);
    struct net_device *dev = lp->dev;
    unsigned long ioaddr = dev->base_addr;
    unsigned long flags;
    int work_done;  //DM// 完成的工作
    u16 val;
    /// 接收最多budge个数据包,并递交给网络层,然后返回总共接收的包的数量
    work_done = pcnet32_rx(dev, budget);

    spin_lock_irqsave(&lp->lock, flags);
    //DM//下面像是在做出错处理啊。。。pcnet32_tx还是不知道,判断是否错误是否需要导致重启contorller
    if (pcnet32_tx(dev)) {
        /* reset the chip to clear the error condition, then restart */
        lp->a.reset(ioaddr);

        /**DM
         * 下面不应该有09
         * CSR4: Test and Features Control
         */
        lp->a.write_csr(ioaddr, CSR4, 0x0915);  /* auto tx pad */
        pcnet32_restart(dev, CSR0_START);
        netif_wake_queue(dev);
    }
    spin_unlock_irqrestore(&lp->lock, flags);

    //DM// 开中断,关掉中断屏蔽
    if (work_done < budget) {
        spin_lock_irqsave(&lp->lock, flags);

        /* 
         * 实现只有一句话__napi_complete(napi);  功能:Mark NAPI processing as
         * complete.,推测就是通知NAPI我搞定了
         */
        __netif_rx_complete(dev, napi);

        /* clear interrupt masks */ //DM// 把CSR3山的中断屏蔽都关掉
        val = lp->a.read_csr(ioaddr, CSR3);
        val &= 0x00ff;
        lp->a.write_csr(ioaddr, CSR3, val);

        /* Set interrupt enable. */
        lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN);
        ///也是内存写屏障,不过好像是和PCI的特性有点关系
        mmiowb();
        spin_unlock_irqrestore(&lp->lock, flags);
    }
    return work_done;
}
#endif

#define PCNET32_REGS_PER_PHY    32
#define PCNET32_MAX_PHYS    32
static int pcnet32_get_regs_len(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int j = lp->phycount * PCNET32_REGS_PER_PHY;

    return ((PCNET32_NUM_REGS + j) * sizeof(u16));
}

static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
                 void *ptr)
{
    int i, csr0;
    u16 *buff = ptr;
    struct pcnet32_private *lp = netdev_priv(dev);
    struct pcnet32_access *a = &lp->a;
    ulong ioaddr = dev->base_addr;
    unsigned long flags;

    spin_lock_irqsave(&lp->lock, flags);

    csr0 = a->read_csr(ioaddr, CSR0);
    if (!(csr0 & CSR0_STOP))    /* If not stopped */
        pcnet32_suspend(dev, &flags, 1);

    /* read address PROM */
    for (i = 0; i < 16; i += 2)
        *buff++ = inw(ioaddr + i);

    /* read control and status registers */
    for (i = 0; i < 90; i++) {
        *buff++ = a->read_csr(ioaddr, i);
    }

    *buff++ = a->read_csr(ioaddr, 112);
    *buff++ = a->read_csr(ioaddr, 114);

    /* read bus configuration registers */
    for (i = 0; i < 30; i++) {
        *buff++ = a->read_bcr(ioaddr, i);
    }
    *buff++ = 0;        /* skip bcr30 so as not to hang 79C976 */
    for (i = 31; i < 36; i++) {
        *buff++ = a->read_bcr(ioaddr, i);
    }

    /* read mii phy registers */
    if (lp->mii) {
        int j;
        for (j = 0; j < PCNET32_MAX_PHYS; j++) {
            if (lp->phymask & (1 << j)) {
                for (i = 0; i < PCNET32_REGS_PER_PHY; i++) {
                    lp->a.write_bcr(ioaddr, 33,
                            (j << 5) | i);
                    *buff++ = lp->a.read_bcr(ioaddr, 34);
                }
            }
        }
    }

    if (!(csr0 & CSR0_STOP)) {  /* If not stopped */
        int csr5;

        /* clear SUSPEND (SPND) - CSR5 bit 0 */
        csr5 = a->read_csr(ioaddr, CSR5);
        a->write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
    }

    spin_unlock_irqrestore(&lp->lock, flags);
}

static const struct ethtool_ops pcnet32_ethtool_ops = {
    .get_settings       = pcnet32_get_settings,
    .set_settings       = pcnet32_set_settings,
    .get_drvinfo        = pcnet32_get_drvinfo,
    strcpy(info->driver, DRV_NAME);
    strcpy(info->version, DRV_VERSION);
    if (lp->pci_dev)
        strcpy(info->bus_info, pci_name(lp->pci_dev));
    .get_msglevel       = pcnet32_get_msglevel,
    .set_msglevel       = pcnet32_set_multicast_listsglevel,
    .nway_reset     = pcnet32_nway_reset,
    .get_link       = pcnet32_get_link,
    .get_ringparam      = pcnet32_get_ringparam,
    .set_ringparam      = pcnet32_set_ringparam,
    .get_strings        = pcnet32_get_strings,
    .self_test      = pcnet32_ethtool_test,
    .phys_id        = pcnet32_phys_id,
    .get_regs_len       = pcnet32_get_regs_len,
    .get_regs       = pcnet32_get_regs,
    .get_sset_count     = pcnet32_get_sset_count,
};

/* only probes for non-PCI devices, the rest are handled by
 * pci_register_driver via pcnet32_probe_pci */

static void __devinit pcnet32_probe_vlbus(unsigned int *pcnet32_portlist)
{
    unsigned int *port, ioaddr;

    /* search for PCnet32 VLB cards at known addresses */
    for (port = pcnet32_portlist; (ioaddr = *port); port++) {
        if (request_region
            (ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_vlbus")) {
            /* check if there is really a pcnet chip on that ioaddr */
            if ((inb(ioaddr + 14) == 0x57)
                && (inb(ioaddr + 15) == 0x57)) {
                pcnet32_probe1(ioaddr, 0, NULL);
            } else {
                release_region(ioaddr, PCNET32_TOTAL_SIZE);
            }
        }
    }
}

///PCI设备启动时,BIOS会自动识别PCI设备,并分配相关资源,pdev是对设备资源的抽象
static int __devinit
pcnet32_probe_pci(struct pci_dev *pdev, const struct pci_device_id *ent)
/*
 * each function can be identified at hardware level by a 16-bit address
 * the structure pci_dev  was used to represent it,so we don't need to act on 
 * the address
 */

{
    unsigned long ioaddr;
    int err;
/*
This function actually enables the device.
It wakes up the device and in some cases also assigns its interrupt line and I/O regions.
*/
    err = pci_enable_device(pdev);

    if (err < 0) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX
                   "failed to enable device -- err=%d\n", err);
        return err;
    }
    ///为设备pdev启用总线控制,即使得设备具备申请PCI总线控制权的能力(  感觉应该是权限)
    pci_set_master(pdev);
    /*
     * PCI配置空间中的6个基地址寄存器,每个都为32位,它们代表PCI的6个IO区域。在linux内核中,
     * PCI设备的IO区域已被集成到通用资源管理,所以要想获得PCI设备的基地址在存储器域的物理地址,
     * 要通过下面的函数:
     * unsigned long pci_resource_start(struct pci_dev *pdev, int bar);
     * 该函数返回6个PCI IO区域中的第bar个的基地址值(存储器域的物理地址)。bar代表基地址
     * 寄存器(base address register),取值为0到5.
     * 所以下面的返回第一个基地址寄存器的值
     */
    ioaddr = pci_resource_start(pdev, 0);
    if (!ioaddr) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX
                   "card has no PCI IO resources, aborting\n");
        return -ENODEV;
    }

    if (!pci_dma_supported(pdev, PCNET32_DMA_MASK)) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX
                   "architecture does not support 32bit PCI busmaster DMA\n");
        return -ENODEV;
    }
    /*
     *这个函数告诉内核, 你要使用 PCNET32_TOTAL_SIZE 个端口, 从 ioaddr 开始. name 
     *参数应当是你的设备的名子.如果分配成功返回值是非 NULL. 
     *如果你从 request_region 得到 NULL, 你将无法使用需要的端口
    */
    if (request_region(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_pci") ==
        NULL) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX
                   "io address range already allocated\n");
        return -EBUSY;
    }
    /// 调用pcnet32_probe1()
    err = pcnet32_probe1(ioaddr, 1, pdev);
    if (err < 0) {
        pci_disable_device(pdev);
    }
    return err;
}
/* pcnet32_probe1
 *  Called from both pcnet32_probe_vlbus and pcnet_probe_pci.
 *  pdev will be NULL when called from pcnet32_probe_vlbus.
 */

/*
 * 1.获取设别IO基地址,确定IO接口的位数,并赋对应的操作函数结构体
 * 2.识别芯片版本,设置芯片相关的参数等,比如是否支持full duplex、mii等
 * 3.给发现的设备分配一个net_device 结构体,并读取硬件中的信息,填充net_device,如 MAC
 * 4.获取私有数据块地址lp,填充lp的结构,包括分配initialization block、填写irq、mes_enable等
 * 5.设置napi,并注册poll函数
 * 6.给net_device分配发送和接收ring
 * 7.填充initalization block,但是如果pdev非0的话,本函数并不会触发init block写入网卡就寄存器
 * 8.初始化watchdog,并注册watchdog函数
 * 9.注册其他操作函数
 * 10.注册该net_device结构,注意:前面的注册本质只是填充net_device结构体,并非真正的注册
 * 11.相关出错处理
 */
static int __devinit
pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev)
{
    struct pcnet32_private *lp;
    int i, media;
    int fdx, mii, fset, dxsuflo;
    int chip_version; ///版本号
    char *chipname;  ///芯片名称
    struct net_device *dev;
    struct pcnet32_access *a = NULL;
    u8 promaddr[6];
    int ret = -ENODEV;

     /*79c970A默认的IO mode是16bit 所以这里reset要使用16bit mode的读操作方式*/
    ///Reset causes the device to cease operation and clear its internal logic.
    pcnet32_wio_reset(ioaddr);
    /***
     *通过往RDP(both 16bit and 32bit are at offset 0x10)中进行写操作来转换成32bit
     *IO mode指的是contoller的IO寄存器的映射方式
     */
    /* NOTE: 16-bit check is first, otherwise some older PCnet chips fail */
    /*
     pcnet32_wio_read_csr(ioaddr, 0):读取CSR0的数据,判断是否为4,此时STOP位是置1的,
     表示此时网卡的状态是inactive(因为pcnet32_wio_reset(ioaddr);已经重置过网卡,网卡此时应为inactive状态
    ///pcnet32_wio_check(ioaddr):向RAP中写88,再从RAP中读取数据,判断是否是88
    ///上面两个操作都是使用16bit的模式(即使用16bit的操作函数集)任意一个条件不满足,
    都说明网卡不是16位的或者网卡当前的状态不是期望的状态,如果条件都满足,说明是16位的
    网卡,则将16位的访问函数集赋给变量a(struct pcnet32_access类型)
    ///这是因为,由于16位和32位的RAP偏移量是不一样的,所以在32位的am79c970A上执行16位的访问函数,结果必然错误
    ///如果上述两个操作不全为真,则再尝试以32位模式执行同样的操作,如果结果仍为假,说明网卡状态异常,进入错误处理
    ///经测试,在vmware workstation 7平台上fedora9-32bit上,芯片型号是AM79c970A,
    默认为16bit mode,  pcnet32_wio_reset(ioaddr); 之后往RDP写入任意数据,可以转换至32mode
    */

    if (pcnet32_wio_read_csr(ioaddr, 0) == 4 && pcnet32_wio_check(ioaddr)) {
        a = &pcnet32_wio;
    } else {
        pcnet32_dwio_reset(ioaddr);
        if (pcnet32_dwio_read_csr(ioaddr, 0) == 4
            && pcnet32_dwio_check(ioaddr)) {
            a = &pcnet32_dwio;
        } else
            goto err_release_region;
    }

    /// read_csr先向RAP中写入(inw) 0,然后读取RDP的值,返回,
    /// later:  the valu e writed into RAP if the CSR number, and the value of the CSR will be
    /// put into the RDP, so read the RDP after write into the RAP

    /// read the chip's version number from CSR88 and CSR89
    chip_version =
        a->read_csr(ioaddr, 88) | (a->read_csr(ioaddr, 89) << 16);
    ///经测试芯片型号是am79c970A,其version number is (0x0242 1003 | 0x0262H << 16) = 0x0262 1003


    if ((pcnet32_debug & NETIF_MSG_PROBE) && (pcnet32_debug & NETIF_MSG_HW))
        printk(KERN_INFO "  PCnet chip version is %#x.\n",
               chip_version);

    /// the last 12 bits of the version number should all be 0x003, I think
    ///  chipversion = 0262 1003H
    if ((chip_version & 0xfff) != 0x003) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_INFO PFX "Unsupported chip version.\n");
        goto err_release_region;
    }

    /* initialize variables */
    /**
     * fdx表示full duplex 全双工,为1支持全双工,为0表示不能支持全双工
     * ////??????? mii 表示是否支持mii,mii干啥的,
     * ////??????? fset
     * ////??????? dxsuflo未知
     */
    fdx = mii = fset = dxsuflo = 0;

    /// get the 2 bytes befor 0x003;
    chip_version = (chip_version >> 12) & 0xffff;
    /// VMware提供的网卡是79c97cA,chip_version = 2621H
    switch (chip_version) {
    case 0x2420:
    //// because the chip supplied by vmware is 70c970, so I will concentrate on  this case
        chipname = "PCnet/PCI 79C970";  /* PCI */
        break;
    case 0x2430:
        if (shared)
            chipname = "PCnet/PCI 79C970";  /* 970 gives the wrong chip id back */
        else
            chipname = "PCnet/32 79C965";   /* 486/VL bus */
        break;
    case 0x2621:
        chipname = "PCnet/PCI II 79C970A";  /* PCI */
        fdx = 1;
        break;
    case 0x2623:
        chipname = "PCnet/FAST 79C971"; /* PCI */
        fdx = 1;
        mii = 1;
        fset = 1;
        break;
    case 0x2624:
        chipname = "PCnet/FAST+ 79C972";    /* PCI */
        fdx = 1;
        mii = 1;
        fset = 1;
        break;
    case 0x2625:
        chipname = "PCnet/FAST III 79C973"; /* PCI */
        fdx = 1;
        mii = 1;
        break;
    case 0x2626:

        /// well,the 79c978 chip looks like it's a little special, I don't have the hardware manual of it ,and  just ignore it
        chipname = "PCnet/Home 79C978"; /* PCI */
        fdx = 1;
        /*
         * This is based on specs published at www.amd.com.  This section
         * assumes that a card with a 79C978 wants to go into standard
         * ethernet mode.  The 79C978 can also go into 1Mb HomePNA mode,
         * and the module option homepna=1 can select this instead.
         */
        media = a->read_bcr(ioaddr, 49);
        media &= ~3;   /* default to 10Mb ethernet */
        if (cards_found < MAX_UNITS && homepna[cards_found])
            media |= 1; /* switch to home wiring mode */
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_DEBUG PFX "media set to %sMbit mode.\n",
                   (media & 1) ? "1" : "10");
        a->write_bcr(ioaddr, 49, media);
        break;
    case 0x2627:
        chipname = "PCnet/FAST III 79C975"; /* PCI */
        fdx = 1;
        mii = 1;
        break;
    case 0x2628:
        chipname = "PCnet/PRO 79C976";
        fdx = 1;
        mii = 1;
        break;
    default:
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_INFO PFX
                   "PCnet version %#x, no PCnet32 chip.\n",
                   chip_version);
        goto err_release_region;
    }

    /*
     *  On selected chips turn on the BCR18:NOUFLO bit. This stops transmit
     *  starting until the packet is loaded. Strike one for reliability, lose
     *  one for latency - although on PCI this isnt a big loss. Ohlder chips
     *  have FIFO's smaller tan a packet, so you can't do this.
     *  Turn on BCR18:BurstRdEn and BCR18:BurstWrEn.
     */


    //// case  79c970 ,fset == 0, false, so was ingored by me
    if (fset) {
        a->write_bcr(ioaddr, 18, (a->read_bcr(ioaddr, 18) | 0x0860));//打开BCR18的第11位,即NOUFLO位,以及第6位(BREADE)和第5位(BWRITE)
        a->write_csr(ioaddr, 80,
                 (a->read_csr(ioaddr, 80) & 0x0C00) | 0x0c00);
        dxsuflo = 1;
    }
    /*
     * struct net_device *dev;
     * 分配一个net_device结构,并分配一个大小为struct 
     * pcnte32_private的size的内存空间即(sizeof(*lp)),并将net_device
     * 中的priv指向这个大小为sizeof(struct pcnet32_private)的内存空间的的首地址
     */
    dev = alloc_etherdev(sizeof(*lp));
    /// exception handling
    if (!dev) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX "Memory allocation failed.\n");
        ret = -ENOMEM;
        goto err_release_region;
    }
    /* 把dev->dev.parent设置为pdev->dev。dev->dev 和pdev->dev都是struct 
     * device结构, struct device结构是devcie model中使用的设备节点结构,这句话是为
     * 了表明net_device对pci_device的继承关系,而pci_device将struct device作为成员
     * (隐式地表明pci_device是 struct devcie的子类),则是为了将pci_device挂到 
     * device model设备树的节点上
     */
    SET_NETDEV_DEV(dev, &pdev->dev);
    if (pcnet32_debug & NETIF_MSG_PROBE)
        printk(KERN_INFO PFX "%s at %#3lx,", chipname, ioaddr);

    /* In most chips, after a chip reset, the ethernet address is read from the
     * station address PROM at the base address and programmed into the
     * "Physical Address Registers" CSR12-14.
     * As a precautionary measure, we read the PROM values and complain if
     * they disagree with the CSRs.  If they miscompare, and the PROM addr
     * is valid, then the PROM addr is used.
     */
    /*填充dev中的MAC地址。MAC地址存放于CSR12(对应MAC[15:0]),CSR13(MAC[31:16])
     *  ,CSR14(MAC[47:32]),每个CSR均使用低16位
     * CSR3 bit2可设置网卡使用大端模式或者小端模式,CSR3 bit2为0是为小端,为1时为大端,
     * 默认值是0,即默认为小端,因为此时网卡已经重置,所以此时网卡使用的是小端,当前CPU
     * 为x86架构,也为小端,所以不存在大小端转换问题
     */
    for (i = 0; i < 3; i++) {
        unsigned int val;
        val = a->read_csr(ioaddr, i + 12) & 0x0ffff;
        /* There may be endianness issues here. */

        dev->dev_addr[2 * i] = val & 0x0ff;
        dev->dev_addr[2 * i + 1] = (val >> 8) & 0x0ff;
    }

    /* read PROM address and compare with CSR address */

    /* 
     *读取AM79C970的IO resourece(起始地址为ioaddr,参见PCnet Family Software Design 
     * Considerations)的byte0到 byte5中存放的48-bit ethernet address,放入promaddr中
     */
    for (i = 0; i < 6; i++)
        promaddr[i] = inb(ioaddr + i);
    /* 
     *对从PROM中读取的MAC地址(存放于promaddr)和从CSR12~CSR14中读取的MAC地址(存放于dev->dev_addr)
    * 进行比较,如果两个值不相等或者dev_addr不是一个有效的MAC地址,则把prom的值拷给dev->dev_addr;
    /*
     *为什么要比较,因为网卡可能重新打开,那么可能CSR12~CSR14里面的值是之前已经改动过
     *的MAC地址,非原始MAC地址,所以要把他回复成原始的MAC地址
     */
    if (memcmp(promaddr, dev->dev_addr, 6)
        || !is_valid_ether_addr(dev->dev_addr)) {
        if (is_valid_ether_addr(promaddr)) {
            if (pcnet32_debug & NETIF_MSG_PROBE) {
                printk(" warning: CSR address invalid,\n");
                printk(KERN_INFO
                       "    using instead PROM address of");
            }
            memcpy(dev->dev_addr, promaddr, 6);
        }
    }
    /////?????网卡MAM地址在哪改,是否通过ioctl()来改
    /// perm_addr 指的是 Permanent hardware address (即 MAC) netdevice.h中可以找到
    memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);

    ///??????为什么MAC地址要置0000
    /* if the ethernet address is not valid, force to 00:00:00:00:00:00 */
    if (!is_valid_ether_addr(dev->perm_addr))
        memset(dev->dev_addr, 0, sizeof(dev->dev_addr));

    if (pcnet32_debug & NETIF_MSG_PROBE) {
        /// It's a macro which define char mac[MAC_BUF_SIZE]  MAC_BUF_SIZE = 18
        DECLARE_MAC_BUF(mac);
        printk(" %s", print_mac(mac, dev->dev_addr));

        /* Version 0x2623 and 0x2624 */
        ///  79C70A was 0x2621  so ignored,下面没做什么实际工作,就是读取某些寄存器然后输出内容
        if (((chip_version + 1) & 0xfffe) == 0x2624) {
            i = a->read_csr(ioaddr, 80) & 0x0C00;   /* Check tx_start_pt */
            printk("\n" KERN_INFO "    tx_start_pt(0x%04x):", i);
            switch (i >> 10) {
            case 0:
                printk("  20 bytes,");
                break;
            case 1:
                printk("  64 bytes,");
                break;
            case 2:
                printk(" 128 bytes,");
                break;
            case 3:
                printk("~220 bytes,");
                break;
            }
            i = a->read_bcr(ioaddr, 18);    /* Check Burst/Bus control */
            printk(" BCR18(%x):", i & 0xffff);
            if (i & (1 << 5))
                printk("BurstWrEn ");
            if (i & (1 << 6))
                printk("BurstRdEn ");
            if (i & (1 << 7))
                printk("DWordIO ");
            if (i & (1 << 11))
                printk("NoUFlow ");
            i = a->read_bcr(ioaddr, 25);//BCR25是SRAM的大小
            printk("\n" KERN_INFO "    SRAMSIZE=0x%04x,", i << 8);
            i = a->read_bcr(ioaddr, 26);//BCR26: SRAM Boundary Register
            printk(" SRAM_BND=0x%04x,", i << 8);
            i = a->read_bcr(ioaddr, 27);//BCR27: SRAM Interface Control Register
            if (i & (1 << 14))
                printk("LowLatRx");
        }
    }

    dev->base_addr = ioaddr;

    ///返回net_device *dev 的私有数据地址
    lp = netdev_priv(dev);
    /* pci_alloc_consistent returns page-aligned memory, so we do not have to check the alignment */
    /////????????一致映射和流式映射的区别
    if ((lp->init_block =
         pci_alloc_consistent(pdev, sizeof(*lp->init_block), &lp->init_dma_addr)) == NULL) {//分配initialization block
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX
                   "Consistent memory allocation failed.\n");
        ret = -ENOMEM;
        goto err_free_netdev;
    }
    lp->pci_dev = pdev;

    lp->dev = dev;

    spin_lock_init(&lp->lock);

    SET_NETDEV_DEV(dev, &pdev->dev);  这句话和上面的重复了,删掉
    lp->name = chipname;
    /*
     * lp->shared_irq表示是否共享中断号,注册中断服务程序时,lp->shrared_irq 
     * 如果为flags置为IRQ_SHARED,表示共 享中断号,为0则flag置0,表示不共享中断号,共享中
     * 断号的意思是多个ISR可以注册到同一个IRQ上,这些ISR会被中断子系统以链表的形式连接在
     * 一起,每一个IRQ都对应这样一个链表,当设备向CPU发出中断请求时,中断子系统会根据IRQ
     * 遍历对应的链表,链表上的每一个ISR都会被调用一次,(中断子系统给ISR传递两个参数,第
     * 一个是IRQ,即链表对应的IRQ,第二个是void *dev_id,是可以用 来唯一标示设备的指针,
     * 这个指针是在注册ISR时传递给中断子系统的,一般都是使用设备对应的结构体的指针。)ISR
     * 应该先检测自己的硬件有没有产生中断(一般是检测硬件的寄存器的标志位),如果没有则退
     * 出中断服务程序,此时中断子系统会自动调用链表中的下一个ISR,如果硬件发生中断则开始进
     * 行中断处理,中断处理完成后ISR返回,中断子系统继续调用链表中下一个ISR
     */

    /*
     * 设备向CPU发出中断时,如果CPU此时为开中断,则CPU会立即响应,会立即给中断控制器发
     * 一个ack消息,中断控制器会将中断号放在数据线上供CPU读取,CPU读取后,会根据中断号找
     * 到该中断号的中断向量,并且调用该中断向量,注意,当CPU调用中断向量之前,处于关中断状
     * 态。然后CPU必须在合适的时机(时机一般是调用设备的ISR之前,这是为了提高并发性,即尽
     * 快让出CPU的中断管脚资源,让其他中断请求可以被受理)向中断控制器发出EOI(end of 
     * interrupt)消息,表示该中断请求已经受理,即告诉中断 控制器不必再发出该中断请求。

    */
    lp->shared_irq = shared;
    /////lp->tx_ring_size 表示发送ring的大小(即一个ring上有多少个tramsimit descriptor),
    ///  #define TX_RING_SIZE  (1 << (PCNET32_LOG_TX_BUFFERS)) 
    /// default tx ring size *PCNET32_LOG_TX_BUFFERS是存储在init block中 TLEN域的值 
    lp->tx_ring_size = TX_RING_SIZE;    
    ////和tx_ring_size类似,不同的是rx对应的域是RELN
    lp->rx_ring_size = RX_RING_SIZE;    /* default rx ring size */
    lp->tx_mod_mask = lp->tx_ring_size - 1;  ////绕圈时通过tx_mod_mask取余来获得当前在ring中的位置坐标
    lp->rx_mod_mask = lp->rx_ring_size - 1;
    /*
     * 这里的tx_len_bits和rx_len_bits是后面用来填充init block的 tlen_rlen成员的
    (tlen_rlen为__le16类型的 变量)。 tlen_rlen成员的bit12~big15用来存放tx_len_bits,
    * bit4~bit7用来存放rx_len_bigs,tlen_rlen = lp->tx_len_bits | lp->rx_len_bits,
    * 左移是为了把tx_len_bits、rx_len_bits准确地填入tlen_rlen对应位置中
    */
    lp->tx_len_bits = (PCNET32_LOG_TX_BUFFERS << 12);  ////(4 << 12)
    lp->rx_len_bits = (PCNET32_LOG_RX_BUFFERS << 4);   ////(5 << 4)
    ////??????/下面三行弄清楚作用
    lp->mii_if.full_duplex = fdx;
    lp->mii_if.phy_id_mask = 0x1f;
    lp->mii_if.reg_num_mask = 0x1f;
    lp->dxsuflo = dxsuflo; /// for 79c970A dxsuflo = 0;
    lp->mii = mii;  /// for 79c970A mii = 0;
    lp->chip_version = chip_version;
    lp->msg_enable = pcnet32_debug;

    /// if else 都干了同一件事情 就是  lp->options = PCNET32_PORT_ASEL; (值为0x04)
    //lp->options用于决定网卡和网线的接口是哪种(AUI,10BAST-T,MII等)
    ///如果已经发现了至少 MAX_UNITS张卡,或者该卡
    /////////?????????
    if ((cards_found >= MAX_UNITS)
        || (options[cards_found] > sizeof(options_mapping)))
        lp->options = PCNET32_PORT_ASEL;
    else
        lp->options = options_mapping[options[cards_found]];
    lp->mii_if.dev = dev;
    /// 由于lp->mii ==0, 所以下面的两个函数没有任何实质性的操作
    lp->mii_if.mdio_read = mdio_read;
    lp->mii_if.mdio_write = mdio_write;

    /* napi.weight is used in both the napi and non-napi cases */
    //下面这局多余,往下 7行有解释
    ///权重越大,一次中断中能够完成的工作就越多,权重指的是该设备所要准备接收的包数量
    lp->napi.weight = lp->rx_ring_size / 2;

#ifdef CONFIG_PCNET32_NAPI
    //// pcnet32_poll is a function defined ahead
    //// 注册poll函数 pcnet32_poll
    //将(lp->napi)->poll赋为pcnet32_poll。并把第四个参数赋给napi->weight
    netif_napi_add(dev, &lp->napi, pcnet32_poll, lp->rx_ring_size / 2);
#endif
    /// 下面这个if语句块也是多余的,因为 !(lp->options & PCNET32_PORT_ASEL) 为假,原因往前看20行
    if (fdx && !(lp->options & PCNET32_PORT_ASEL) &&
        ((cards_found >= MAX_UNITS) || full_duplex[cards_found]))
        lp->options |= PCNET32_PORT_FD;
    /// 出错处理,如果前面a赋值没有出现问题,不会执行这段
    if (!a) {
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(KERN_ERR PFX "No access methods\n");
        ret = -ENODEV;
        goto err_free_consistent;
    }
    lp->a = *a;

    /* prior to register_netdev, dev->name is not yet correct */
    if (pcnet32_alloc_ring(dev, pci_name(lp->pci_dev))) {
    //这实际上使分配发送和接收ring,其值供设置init_block中的rx_ring和tx_ring使用)
        ret = -ENOMEM;
        goto err_free_ring;
    }
    /* detect special T1/E1 WAN card by checking for MAC address */
    ///推测认为下面的语句也是没有用的
    /// 这里感觉是Vmware模拟出错,实际测试 mac前24位是00:0c:29 但是amd实际上是00:00:1A
    //// 但是不管是哪种值,下面的if语句都是不成立的,所以下面的语句是多余的
    /////??????不知道
    if (dev->dev_addr[0] == 0x00 && dev->dev_addr[1] == 0xe0
        && dev->dev_addr[2] == 0x75)
        lp->options = PCNET32_PORT_FD | PCNET32_PORT_GPSI;

    /*填写initialization block开始*/
    ///对应MODE 0x0003 设置了 两位  1. loopback enable  2.Disable Transmit
    lp->init_block->mode = cpu_to_le16(0x0003); /* Disable Rx and Tx. Mode初始化的是CSR15*/
    ///对应TLEN 和 RLEN
    lp->init_block->tlen_rlen =
        cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
    ///对应PADR 48bit
    for (i = 0; i < 6; i++)
        lp->init_block->phys_addr[i] = dev->dev_addr[i];
    ///对应LADRF
    lp->init_block->filter[0] = 0x00000000;
    lp->init_block->filter[1] = 0x00000000;
    ///对应 RDRA和 TDRA, RDRA 是由传输任务描述符组成的数组(tx_ring)的首地址
    lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr);   //// rx_ring_dma_addr的值在pcnet32_alloc_ring中被赋值
    lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
    /*填写initialization block结束*/

    /* switch pcnet32 to 32bit mode */
    ///下面的设置同时会导致 SSIZE32 (BCR20, bit 8) 为1,最终导致 csr 2 的低16bit组成(存放)IADR的高16位
    a->write_bcr(ioaddr, 20, 2);//BCR20控制从16位到32位的切换,切换的是software style
    a->write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));//CSR1和CSR2中存放intial_block的起始地址。
    a->write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));

    /// 获如果pci设备没有提供IRQ,调用 proble_irq_on 获取一个位掩码
    /// 关于 probe_irq_on 驱动程序必须保存返回的为掩码,并且将它传递给后面的probe_irq_off函数,
    ///调用该函数之后(调用probe_irq_on之前),驱动程序要安排设备至少产生一次中断。
    ////如果总线总线系统是vlbus,则pdev为0
    if (pdev) {     /* use the IRQ provided by PCI */
    ///\ 在 Linux 启动时, 计算机的固件已经分配一个唯一的中断号给设备, 并且驱动只需要使用它,就是pdev->irq
        dev->irq = pdev->irq;
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(" assigned IRQ %d.\n", dev->irq);
    } else
    /////
    { ////不知道这里的else有什么意义,如果pdev为假的话,前面获取ioaddr也是错误的,所有操作都没有意义了
        ////下面这段话是为了靠自己获得一个网卡中断号
        unsigned long irq_mask = probe_irq_on();

        /*
         * To auto-IRQ we enable the initialization-done and DMA error
         * interrupts. For ISA boards we get a DMA error, but VLB and PCI
         * boards will work.
         */
        /* Trigger an initialization just for the interrupt. */
        /// previously defined CSR0 = 0
        /// #define CSR0_INIT   0x1
        /// #define CSR0_INTEN  0x40
       /*  INIT assertion enables PCnet-PCI controller to begin the initialization
        *  procedure which reads in the initialization block from memory.
             INTEN Interrupt Enable allows INTA to be active if the Interrupt Flag is
            set
        */
        /// CSR0_INIT enable 从内存中读取initialblock,根据手册中其他地方的意思,就是开始读取
        /// CSR0_INTEN 对应IENA位 Interrupt Enable allows INTA to be active if the Interrupt Flag is set.
        /// init block 传输完成后,PCnet-PCI controller 会把 CSR0中的 IDON 置为1,这个动作会产生一个中断
        a->write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_INIT);

        mdelay(1); ///// 延时一秒(忙等待函数),推断是为了给传输init blcok从而产生中断提供时间
        dev->irq = probe_irq_off(irq_mask); /// 该函数返回前面发生的中断的中断号
        if (!dev->irq) {
            if (pcnet32_debug & NETIF_MSG_PROBE)
                printk(", failed to detect IRQ line.\n");
            ret = -ENODEV;
            goto err_free_ring;
        }
        if (pcnet32_debug & NETIF_MSG_PROBE)
            printk(", probed IRQ %d.\n", dev->irq);
    }

    /* Set the mii phy_id so that we can query the link state */
    /// for 79c70A mii =0 ,所以下面的代码忽略
    ///??????
    if (lp->mii) {
        /* lp->phycount and lp->phymask are set to 0 by memset above */

        lp->mii_if.phy_id = ((lp->a.read_bcr(ioaddr, 33)) >> 5) & 0x1f;//BCR33放的是MDIO的起始地址
        /* scan for PHYs */
        for (i = 0; i < PCNET32_MAX_PHYS; i++) {/*扫描PHYS*/
            unsigned short id1, id2;

            id1 = mdio_read(dev, i, MII_PHYSID1);
            if (id1 == 0xffff)
                continue;
            id2 = mdio_read(dev, i, MII_PHYSID2);
            if (id2 == 0xffff)
                continue;
            if (i == 31 && ((chip_version + 1) & 0xfffe) == 0x2624)
                continue;   /* 79C971 & 79C972 have phantom phy at id 31 */
            lp->phycount++;
            lp->phymask |= (1 << i);
            lp->mii_if.phy_id = i;
            if (pcnet32_debug & NETIF_MSG_PROBE)
                printk(KERN_INFO PFX
                       "Found PHY %04x:%04x at address %d.\n",
                       id1, id2, i);
        }
        lp->a.write_bcr(ioaddr, 33, (lp->mii_if.phy_id) << 5);
        if (lp->phycount > 1) {
            lp->options |= PCNET32_PORT_MII;
        }
    }
    /*
     * 初始化lp的timer的数据结构。该timer作用是时不时的检查硬件链路状态,若硬件链路断掉,
     * 如拔掉网线,将通知上层。该通知机制是通过workqueue实现的。
     */
    init_timer(&lp->watchdog_timer);
    lp->watchdog_timer.data = (unsigned long)dev;
    lp->watchdog_timer.function = (void *)&pcnet32_watchdog;

    /* The PCNET32-specific entries in the device structure. */

    /*
     * int (*open)(struct net_device *dev);  
     * 开启接口
     *
     * int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev); 
     * 要求硬件开始送出一个封包
     *
     * int (*stop)(struct net_device *dev);   
     * 停用接口

     * struct net_device_stats *(*get_stats)(struct net_device *dev);   
     * 每当应用程序需接口统计信息时,就会触动此作业方法.

     * void (*set_multicast_list)(struct net_device *dev);
     * 每当装置的群播名单或flags位掩码有任何变动时,就会触发此作业方法.

     * int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 
     * 执行特殊的ioctl命令.

     * void (*tx_timeout)(struct net_device *dev);  
     * 若无法在一段合理时间内完成封包传输,则会呼叫此作业方法.

     * int watchdog_timeo;      
     * 网络子系统断定传输逾期的最短时间间隔.
     */
    dev->open = &pcnet32_open;  ////开启接口
    dev->hard_start_xmit = &pcnet32_start_xmit;  ///要求硬件开始送出一个封包
    dev->stop = &pcnet32_close;  /// 关闭接口
    dev->get_stats = &pcnet32_get_stats;
    dev->set_multicast_list = &pcnet32_set_multicast_list;
    dev->do_ioctl = &pcnet32_ioctl; ////给用户程序提供的控制设备的接口
    dev->ethtool_ops = &pcnet32_ethtool_ops; ///给ethtool提供的支持
    dev->tx_timeout = pcnet32_tx_timeout; ////打印错误信息,重启controller
    dev->watchdog_timeo = (5 * HZ); ////传输超时的时间值,推测判断超时是上层的任务。

#ifdef CONFIG_NET_POLL_CONTROLLER
    ////???? poll_controller作用,由谁来调用,何时会被调用
    dev->poll_controller = pcnet32_poll_controller;
#endif

    /* Fill in the generic fields of the device structure. */
    /// 注册网络设备,可以推测注册成功是返回0的
    if (register_netdev(dev))
        goto err_free_ring;
    ///把网络设备指针地址放入PCI设备中的设备指针中
    ///实际上干了 pdev->dev->driver_data = dev;
    if (pdev) {
        pci_set_drvdata(pdev, dev);
    } else {
        /// defined before: struct net_device *pcnet32_dev
        //// 不知道这个是什么样的错误处理机制,
        lp->next = pcnet32_dev;
        pcnet32_dev = dev;
    }

    if (pcnet32_debug & NETIF_MSG_PROBE)
        printk(KERN_INFO "%s: registered as %s\n", dev->name, lp->name);
    cards_found++;

    /* enable LED writes */
    /// 下面这句推测是错的,因为 他是要往 BCR2 bit 12 写的,但是bit12 was reserved
    /// 实测写入是不会改变bcr2存储的值的,删掉这句话ping还是可以ping通
    a->write_bcr(ioaddr, 2, a->read_bcr(ioaddr, 2) | 0x1000);

    return 0;

      err_free_ring:
    pcnet32_free_ring(dev);
      err_free_consistent:
    pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
                lp->init_block, lp->init_dma_addr);
      err_free_netdev:
    free_netdev(dev);
      err_release_region:
    release_region(ioaddr, PCNET32_TOTAL_SIZE);
    return ret;
}
////pcnet32_alloc_ring() 主要做了3件事,下面详细说明都以tx缓冲为例,rx类似
////1. 给 lp中的tx_ring 和 rx_ring 分配DMA一致映射缓冲区
////2. 分配一个dma_addr_t类型的数组,首地址分别放在 tx_dma_addr中,rx同
////3. 分配一个struc sk_buff 指针的数组,首地址tx_skbuff中,数组大小为 tx_ring_size,rx同,数组元素值均为0
/* if any allocation fails, caller must also call pcnet32_free_ring */
static int pcnet32_alloc_ring(struct net_device *dev, char *name)
{
    struct pcnet32_private *lp = netdev_priv(dev);

    /// 分配一致映射DMA缓冲区,缓冲区的大小和ring的大小(即 tx_ring_size 个  tx_head是相同的)
    lp->tx_ring = pci_alloc_consistent(lp->pci_dev,
                       sizeof(struct pcnet32_tx_head) *
                       lp->tx_ring_size,
                       &lp->tx_ring_dma_addr);
    if (lp->tx_ring == NULL) {
        /*
         *#define netif_msg_drv(p) 
         *((p)->msg_enable & NETIF_MSG_DRV)  ,就是debug level
        */
        if (netif_msg_drv(lp))  
            printk("\n" KERN_ERR PFX
                   "%s: Consistent memory allocation failed.\n",
                   name);
        return -ENOMEM;
    }

    lp->rx_ring = pci_alloc_consistent(lp->pci_dev,
                       sizeof(struct pcnet32_rx_head) *
                       lp->rx_ring_size,
                       &lp->rx_ring_dma_addr);
    if (lp->rx_ring == NULL) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR PFX
                   "%s: Consistent memory allocation failed.\n",
                   name);
        return -ENOMEM;
    }
    //// 分配一个数组,param0是数组大小,param1是元素大小,param2是标志位
    /// GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool
    ///\kcalloc — allocate memory for an array. The memory is set to zero.
    lp->tx_dma_addr = kcalloc(lp->tx_ring_size, sizeof(dma_addr_t),
                  GFP_ATOMIC);
    if (!lp->tx_dma_addr) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR PFX
                   "%s: Memory allocation failed.\n", name);
        return -ENOMEM;
    }

    lp->rx_dma_addr = kcalloc(lp->rx_ring_size, sizeof(dma_addr_t),
                  GFP_ATOMIC);
    if (!lp->rx_dma_addr) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR PFX
                   "%s: Memory allocation failed.\n", name);
        return -ENOMEM;
    }
    /// tx_skbuff 的意思是套接字缓冲区,lp->tx_skbuff是 struct sk_buff** 类型的数据
    lp->tx_skbuff = kcalloc(lp->tx_ring_size, sizeof(struct sk_buff *),
                GFP_ATOMIC);
    if (!lp->tx_skbuff) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR PFX
                   "%s: Memory allocation failed.\n", name);
        return -ENOMEM;
    }

    lp->rx_skbuff = kcalloc(lp->rx_ring_size, sizeof(struct sk_buff *),
                GFP_ATOMIC);
    if (!lp->rx_skbuff) {
        if (netif_msg_drv(lp))
            printk("\n" KERN_ERR PFX
                   "%s: Memory allocation failed.\n", name);
        return -ENOMEM;
    }

    return 0;
}

/// 释放pcnte32_alloc_ring()中分配的内存空间,并且将相关的指针置为NULL
static void pcnet32_free_ring(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);

    kfree(lp->tx_skbuff);
    lp->tx_skbuff = NULL;

    kfree(lp->rx_skbuff);
    lp->rx_skbuff = NULL;

    kfree(lp->tx_dma_addr);
    lp->tx_dma_addr = NULL;

    kfree(lp->rx_dma_addr);
    lp->rx_dma_addr = NULL;

    if (lp->tx_ring) {
        pci_free_consistent(lp->pci_dev,
                    sizeof(struct pcnet32_tx_head) *
                    lp->tx_ring_size, lp->tx_ring,
                    lp->tx_ring_dma_addr);
        lp->tx_ring = NULL;
    }

    if (lp->rx_ring) {
        pci_free_consistent(lp->pci_dev,
                    sizeof(struct pcnet32_rx_head) *
                    lp->rx_ring_size, lp->rx_ring,
                    lp->rx_ring_dma_addr);
        lp->rx_ring = NULL;
    }
}

/****
 *总结:注册中断程序,初始化网卡,分配相关缓冲区,设置运行参数
 * 1.注册设备的中断服务程序
 * 2.reset the pcnet32 controller and switch pcnet32 to 32bit mode
 * 3.reset the auto-selecte bit(int BCR2),并且单网卡的情况下,最后置的
 * 还是auto-selected mod即有controller自动选择下层 接口
 * 4.handle full duplex setting,单网卡下,设置 half duplex operation,且不使用AUI port
 * 5.设置GPSI,单个网卡下,GPSI为假
 * 6.phy相关设置,但是由于程序bug,没有执行有意义的操作
 * 7.设置lp->init_block->mode,单网卡情况下该值为0,即不改变网卡操作模式
 * 8.载入多播表(这个目前还不是很清楚)
 * 9.调用pcnet32_init_ring初始化 lp->rx_skbuff数组,并为每个sk_buff分配缓冲区,建立DMA映射
 * 10.enable napi
 * 11.Re-initialize the PCNET32, and start it when done
 * 12.Print the link status   /////这个函数没有细看了,因为如果
 * 13.start the watchdog
 * 14.出错处理
 */
static int pcnet32_open(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;
    u16 val;
    int i;
    int rc;
    unsigned long flags;
    ///irq启动时BIOS已经完成分配,这里是注册这个irq的中断服务程序,
    if (request_irq(dev->irq, &pcnet32_interrupt,
            lp->shared_irq ? IRQF_SHARED : 0, dev->name,
            (void *)dev)) {
        return -EAGAIN;
    }

    spin_lock_irqsave(&lp->lock, flags);
    /* Check for a valid station address */
    if (!is_valid_ether_addr(dev->dev_addr)) {
        rc = -EINVAL;
        goto err_free_irq;
    }

    /* Reset the PCNET32 */
    lp->a.reset(ioaddr);  ///\Reset causes the device to cease operation and clear its internal logic.

    /* switch pcnet32 to 32bit mode */
    ////这里是指切换到32bit的software style
    lp->a.write_bcr(ioaddr, 20, 2);

    ///\ 判断 lp->meg_enable
    if (netif_msg_ifup(lp))
        printk(KERN_DEBUG
               "%s: pcnet32_open() irq %d tx/rx rings %#x/%#x init %#x.\n",
               dev->name, dev->irq, (u32) (lp->tx_ring_dma_addr),
               (u32) (lp->rx_ring_dma_addr),
               (u32) (lp->init_dma_addr));

    /***
     * While in auto-selection mode, the interface in use is determined by an auto-sensing mechanism which checks the
     * link status on the 10BASE-T port. If there is no active link status, then the device assumes an AUI connection
     *bcr2 bit1置0,
     */
    /* set/reset autoselect bit */
    val = lp->a.read_bcr(ioaddr, 2) & ~2;
    ///\如果lp->options是 PCNET32_PORT_ASEL,则BCR2,bit1写入1,设置auto select,在只有一个芯片的情况下,是auto-selecte
    if (lp->options & PCNET32_PORT_ASEL)
        val |= 2;
    lp->a.write_bcr(ioaddr, 2, val);

    /* handle full duplex setting */
    if (lp->mii_if.full_duplex) {
        val = lp->a.read_bcr(ioaddr, 9) & ~3;  //val的bit0 和bit1 置0
        ///\因为只有一个网卡时options == PCNET32_PROT_ASEL所以下面的语句都不会执行
        if (lp->options & PCNET32_PORT_FD) {
            val |= 1;
            if (lp->options == (PCNET32_PORT_FD | PCNET32_PORT_AUI))
                val |= 2;
        } else if (lp->options & PCNET32_PORT_ASEL) {
            /* workaround of xSeries250, turn on for 79C975 only */
            if (lp->chip_version == 0x2627)
                val |= 3;
        }
        ///\ BCR9: Full-Duplex Control,bit0,bit1 置0,设置 half duplex operation,且不使用AUI port
        lp->a.write_bcr(ioaddr, 9, val);
    }

    /* set/reset GPSI bit in test register */
    ///\ bit4 GPSIEN:General Purpose Serial Interface Enable.,GPSI is used as an interface between Ethernet MAC and PHY blocks.
    val = lp->a.read_csr(ioaddr, 124) & ~0x10;

    ///\ 单个网卡芯片,条件为否,所以GPSI为假
    if ((lp->options & PCNET32_PORT_PORTSEL) == PCNET32_PORT_GPSI)
        val |= 0x10;
    lp->a.write_csr(ioaddr, 124, val);

    /* Allied Telesyn AT 2700/2701 FX are 100Mbit only and do not negotiate */
    /*
     * 这个不是编写AMD的网卡么,AT怎么乱入了。。。。推测可能他们两有一腿,不过由于79c970A* 
     * vendor_id(即subsystem_vendor)为1022h,The PCnet-PCI II controller DeviceID 
     * is 2000h,插define可知,和下面不一样,所以判断语句为假
    */
    if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT &&
        (lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX ||
         lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) {
        if (lp->options & PCNET32_PORT_ASEL) {
            lp->options = PCNET32_PORT_FD | PCNET32_PORT_100;
            if (netif_msg_link(lp))
                printk(KERN_DEBUG
                       "%s: Setting 100Mb-Full Duplex.\n",
                       dev->name);
        }
    }

    //// lp->phycount表示phy的数量
    /*
     * 由于mii==0,所以在pcnet32_probe1中,这个值就没有改过,推测alloc_etherdev时,
     *可能自动识别了phy的数量,vmware下lp->phycount==0
     */
    ///下面的if-else在当前情况(VMWARE)配置下什么都没有干,实际运行了的执行语句,还是错误的,
    if (lp->phycount < 2) {
        /*
         * 24 Jun 2004 according AMD, in order to change the PHY,
         * DANAS (or DISPM for 79C976) must be set; then select the speed,
         * duplex, and/or enable auto negotiation, and clear DANAS
         */
        ///\ mii ==0
        if (lp->mii && !(lp->options & PCNET32_PORT_ASEL)) {
            lp->a.write_bcr(ioaddr, 32,
                    lp->a.read_bcr(ioaddr, 32) | 0x0080);
            /* disable Auto Negotiation, set 10Mpbs, HD */
            val = lp->a.read_bcr(ioaddr, 32) & ~0xb8;
            if (lp->options & PCNET32_PORT_FD)
                val |= 0x10;
            if (lp->options & PCNET32_PORT_100)
                val |= 0x08;
            lp->a.write_bcr(ioaddr, 32, val);
        } else {
            /*
             * 额。。。。BCR32是不存在的。。。所以下面的语句没有任何价值,不过考虑到驱动工作正常,
             * 所以好像不会造成什么disaster。
             */
            if (lp->options & PCNET32_PORT_ASEL) {
                lp->a.write_bcr(ioaddr, 32,
                        lp->a.read_bcr(ioaddr,
                                   32) | 0x0080);
                /* enable auto negotiate, setup, disable fd */
                val = lp->a.read_bcr(ioaddr, 32) & ~0x98;
                val |= 0x20;
                lp->a.write_bcr(ioaddr, 32, val);
            }
        }
    ///判断句条件为真,所以else不会执行
    } else {
        int first_phy = -1;
        u16 bmcr;
        u32 bcr9;
        struct ethtool_cmd ecmd;

        /*
         * There is really no good other way to handle multiple PHYs
         * other than turning off all automatics
         */
        val = lp->a.read_bcr(ioaddr, 2);
        lp->a.write_bcr(ioaddr, 2, val & ~2);
        val = lp->a.read_bcr(ioaddr, 32);
        lp->a.write_bcr(ioaddr, 32, val & ~(1 << 7));  /* stop MII manager */

        if (!(lp->options & PCNET32_PORT_ASEL)) {
            /* setup ecmd */
            ecmd.port = PORT_MII;
            ecmd.transceiver = XCVR_INTERNAL;
            ecmd.autoneg = AUTONEG_DISABLE;
            ecmd.speed =
                lp->
                options & PCNET32_PORT_100 ? SPEED_100 : SPEED_10;
            bcr9 = lp->a.read_bcr(ioaddr, 9);

            if (lp->options & PCNET32_PORT_FD) {
                ecmd.duplex = DUPLEX_FULL;
                bcr9 |= (1 << 0);
            } else {
                ecmd.duplex = DUPLEX_HALF;
                bcr9 |= ~(1 << 0);
            }
            lp->a.write_bcr(ioaddr, 9, bcr9);
        }

        for (i = 0; i < PCNET32_MAX_PHYS; i++) {
            if (lp->phymask & (1 << i)) {
                /* isolate all but the first PHY */
                bmcr = mdio_read(dev, i, MII_BMCR);
                if (first_phy == -1) {
                    first_phy = i;
                    mdio_write(dev, i, MII_BMCR,
                           bmcr & ~BMCR_ISOLATE);
                } else {
                    mdio_write(dev, i, MII_BMCR,
                           bmcr | BMCR_ISOLATE);
                }
                /* use mii_ethtool_sset to setup PHY */
                lp->mii_if.phy_id = i;
                ecmd.phy_address = i;
                if (lp->options & PCNET32_PORT_ASEL) {
                    mii_ethtool_gset(&lp->mii_if, &ecmd);
                    ecmd.autoneg = AUTONEG_ENABLE;
                }
                mii_ethtool_sset(&lp->mii_if, &ecmd);
            }
        }
        lp->mii_if.phy_id = first_phy;
        if (netif_msg_link(lp))
            printk(KERN_INFO "%s: Using PHY number %d.\n",
                   dev->name, first_phy);
    }

#ifdef DO_DXSUFLO
    ///for 79C970A lp->dxsuflo==0,所以条件为假
    if (lp->dxsuflo) {  /* Disable transmit stop on underflow */
        val = lp->a.read_csr(ioaddr, CSR3);
        val |= 0x40;
        lp->a.write_csr(ioaddr, CSR3, val);
    }
#endif
    ///\PCNET32_PORT_PORTSEL = 0x03, options=0x04,so mode = 0;
    lp->init_block->mode =
        cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
        ///TODO\功能推测就是产生filter的值,然后填入对应的CSR中,
    pcnet32_load_multicast(dev);
    ///init_ring初始化 lp->rx_skbuff数组,并为每个sk_buff分配缓冲区,建立DMA映射
    if (pcnet32_init_ring(dev)) {
        rc = -ENOMEM;
        goto err_free_ring;
    }

#ifdef CONFIG_PCNET32_NAPI
    /// enable napi
    napi_enable(&lp->napi);
#endif

    /* Re-initialize the PCNET32, and start it when done. */
    lp->a.write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));
    lp->a.write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));
        /**DM
         * 下面不应该有09
         * CSR4: Test and Features Control,屏蔽Jabber Error,Transmit Start,Receive Collision Counter Overflow产生的中断
         */
    lp->a.write_csr(ioaddr, CSR4, 0x0915);  /* auto tx pad */
    ///INIT  启动init block从内存写入网卡
    lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
    ////start the interface's transmit queue,驱动程序调用这个函数来告诉内核网络子系统,现在可以开始数据包的发送。
    netif_start_queue(dev);

    ////vmware配备的网卡是70c970A
    if (lp->chip_version >= PCNET32_79C970A) {
        /* Print the link status and start the watchdog */
        pcnet32_check_media(dev, 1);
        /* mod_timer - modify a timer's timeout
         * @timer: the timer to be modified
         * @expires: new timeout in jiffies
         *
         * mod_timer() is a more efficient way to update the expire field of an
         * active timer (if the timer is inactive it will be activated)
         */
        ///#define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ)) 不明白为什么要用这个作为expire值,
        /// timeout是一个非常大的数,所以推测作者只是想用一下mod_timer的active the timer的功能
        mod_timer(&(lp->watchdog_timer), PCNET32_WATCHDOG_TIMEOUT);
    }

    i = 0;
    ////循环等待,当init block写入网卡寄存器完成,contorller会自动将CSR0_IDON位置1,该位由0变为1时就说明init block传输完成了
    while (i++ < 100)
        if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
            break;
    /*
     * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
     * reports that doing so triggers a bug in the '974.
     */
    /// CSR0_NORMAL = (CSR0_START | CSR0_INTEN),  下面讲 CSR0中的STRT位和EINA位置1
    ////STRT位,该位置1表示启动网卡控制器发送和接受帧,并开始执行缓冲区管理操作,为1表示不能接受发送数据
    ////IENA位,该位为1表示允许中断,该位为0表示关中断,IENA置1时还会将CSR0的STOP位清0
    lp->a.write_csr(ioaddr, CSR0, CSR0_NORMAL);

    if (netif_msg_ifup(lp))
        printk(KERN_DEBUG
               "%s: pcnet32 open after %d ticks, init block %#x csr0 %4.4x.\n",
               dev->name, i,
               (u32) (lp->init_dma_addr),
               lp->a.read_csr(ioaddr, CSR0));

    spin_unlock_irqrestore(&lp->lock, flags);

    return 0;       /* Always succeed */

      err_free_ring:
    /* free any allocated skbuffs */
    pcnet32_purge_rx_ring(dev);

    /*
     * Switch back to 16bit mode to avoid problems with dumb
     * DOS packet driver after a warm reboot
     */
    lp->a.write_bcr(ioaddr, 20, 4);

      err_free_irq:
    spin_unlock_irqrestore(&lp->lock, flags);
    free_irq(dev->irq, dev);
    return rc;
}

/*
 * The LANCE has been halted for one reason or another (busmaster memory
 * arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
 * etc.).  Modern LANCE variants always reload their ring-buffer
 * configuration when restarted, so we must reinitialize our ring
 * context before restarting.  As part of this reinitialization,
 * find all packets still on the Tx ring and pretend that they had been
 * sent (in effect, drop the packets on the floor) - the higher-level
 * protocols will time out and retransmit.  It'd be better to shuffle
 * these skbs to a temp list and then actually re-Tx them after
 * restarting the chip, but I'm too lazy to do so right now.  [email protected]
 */

///取消tx_ring每个descriptor的数据缓冲区的DMA映射(如果有缓冲区的话),并释放缓冲区
static void pcnet32_purge_tx_ring(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int i;

    for (i = 0; i < lp->tx_ring_size; i++) {
        lp->tx_ring[i].status = 0;  /* CPU owns buffer */
        wmb();      /* Make sure adapter sees owner change */
        if (lp->tx_skbuff[i]) {
            pci_unmap_single(lp->pci_dev, lp->tx_dma_addr[i],
                     lp->tx_skbuff[i]->len,
                     PCI_DMA_TODEVICE);
            dev_kfree_skb_any(lp->tx_skbuff[i]);
        }
        lp->tx_skbuff[i] = NULL;
        lp->tx_dma_addr[i] = 0;
    }
}

/* Initialize the PCNET32 Rx and Tx rings. */
/***
 * 1.为rx_skbuff数组每个元素分配缓冲区,并建立DMA映射FROM_DEVICE所以该缓冲区仅仅,注意
 * rx_skbuff的元素数量是和rx_ring_size相同的,所以推测他们之间应该是一一对应的关系,
 * 2.tx_skbuff需要使用时才分配缓冲区
 * 3.再次填充lp 中的init block,原因不明,而且填充的值都没有变过,所以感觉这里有点多余
 */
static int pcnet32_init_ring(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int i;

    lp->tx_full = 0;
    lp->cur_rx = lp->cur_tx = 0;
    lp->dirty_rx = lp->dirty_tx = 0;
    ///\ rx_ring_size是在probe时指定的,并写入init block了
    for (i = 0; i < lp->rx_ring_size; i++) {
        struct sk_buff *rx_skbuff = lp->rx_skbuff[i];
        /*
         * lp->rx_skbuff初始值均为0,下面是为lp->rx_skbuff初始化,
         * 为每个数据元素分配缓冲区,并是以太网首部对其
         */
        if (rx_skbuff == NULL) {
            if (!
                (rx_skbuff = lp->rx_skbuff[i] =
                 dev_alloc_skb(PKT_BUF_SKB))) {
                /* there is not much, we can do at this point */
                if (netif_msg_drv(lp))
                    printk(KERN_ERR
                           "%s: pcnet32_init_ring dev_alloc_skb failed.\n",
                           dev->name);
                return -1;
            }
            /// 预留出NET_IP_ALIGN长度的首部,因为以太网头部14bity,这里的宏为2,正好16字节,边界对其(4字节)
            skb_reserve(rx_skbuff, NET_IP_ALIGN);
        }

        rmb();
        /*
         * 为每一个时sk_buff的packet数据区(sk_buff中的而一个用来存放packet的区)建立DMA映射,
         * 并将DMA映射地址放在dma_addr数组中,PCI_DAM_FROMDEVICE表明该缓冲区只是 
         * 用来给device写入的,umap之后驱动才能读取里面的数据
         */
        if (lp->rx_dma_addr[i] == 0)
            lp->rx_dma_addr[i] =
                pci_map_single(lp->pci_dev, rx_skbuff->data,
                       PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
        lp->rx_ring[i].base = cpu_to_le32(lp->rx_dma_addr[i]);
        lp->rx_ring[i].buf_length = cpu_to_le16(NEG_BUF_SIZE);
        wmb();      /* Make sure owner changes after all others are visible */
        lp->rx_ring[i].status = cpu_to_le16(0x8000); //将own位置1,contorller为owner
    }
    /* The Tx buffer address is filled in as needed, but we do need to clear
     * the upper ownership bit. */
    for (i = 0; i < lp->tx_ring_size; i++) {
        lp->tx_ring[i].status = 0;  /* CPU owns buffer */
        wmb();      /* Make sure adapter sees owner change */
        lp->tx_ring[i].base = 0;
        lp->tx_dma_addr[i] = 0;
    }

    ///prob\还不清楚为什么要在这里再次填充init block
    lp->init_block->tlen_rlen =
        cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
    for (i = 0; i < 6; i++)
        lp->init_block->phys_addr[i] = dev->dev_addr[i];
    lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr);
    lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
    wmb();          /* Make sure all changes are visible */
    return 0;
}

////restart
/* the pcnet32 has been issued a stop or reset.  Wait for the stop bit
 * then flush the pending transmit operations, re-initialize the ring,
 * and tell the chip to initialize.
 */
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;
    int i;

    /* wait for stop */
    for (i = 0; i < 100; i++)
        if (lp->a.read_csr(ioaddr, CSR0) & CSR0_STOP)
            break;

    ///等待超时,打印错误信息
    if (i >= 100 && netif_msg_drv(lp))
        printk(KERN_ERR
               "%s: pcnet32_restart timed out waiting for stop.\n",
               dev->name);
    ////释放tx_ring持有的资源,缓冲区和DMA映射
    pcnet32_purge_tx_ring(dev);
    ////(重新)初始化tx 和 rx ring
    if (pcnet32_init_ring(dev))
        return;

    /* 
     * 如果上面的初始化失败,则  ////prob/// 不清楚为什么下面的能reinit,
     * 感觉只是重新了initblock,然后设置一下网卡,tx_ring rx_ring 并没有回来啊
     */
    /* ReInit Ring */ 
    /* INIT assertion enables the PCnet-PCI II controller to begin the initialization 
    * procedure which reads the initialization block from memory.
    * lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
    */
    i = 0;
    ////等待init写入网卡完成
    while (i++ < 1000)
        if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
            break;
    ///把参数写入寄存器
    lp->a.write_csr(ioaddr, CSR0, csr0_bits);
}
///主要用于内核调用它解决发送超时的问题,超时可能的原因是设备故障或者传输中线路中断等,解决的方法大多数时候是把硬件设备复位。
///下面的网卡做的事情就是发送超时时,reset contorller。并打印相关错误信息
static void pcnet32_tx_timeout(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr, flags;

    spin_lock_irqsave(&lp->lock, flags);
    /* Transmitter timeout, serious problems. */
    if (pcnet32_debug & NETIF_MSG_DRV)
        printk(KERN_ERR
               "%s: transmit timed out, status %4.4x, resetting.\n",
               dev->name, lp->a.read_csr(ioaddr, CSR0));
    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
    dev->stats.tx_errors++;
    if (netif_msg_tx_err(lp)) {
        int i;
        printk(KERN_DEBUG
               " Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
               lp->dirty_tx, lp->cur_tx, lp->tx_full ? " (full)" : "",
               lp->cur_rx);
        for (i = 0; i < lp->rx_ring_size; i++)
            printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
                   le32_to_cpu(lp->rx_ring[i].base),
                   (-le16_to_cpu(lp->rx_ring[i].buf_length)) &
                   0xffff, le32_to_cpu(lp->rx_ring[i].msg_length),
                   le16_to_cpu(lp->rx_ring[i].status));
        for (i = 0; i < lp->tx_ring_size; i++)
            printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
                   le32_to_cpu(lp->tx_ring[i].base),
                   (-le16_to_cpu(lp->tx_ring[i].length)) & 0xffff,
                   le32_to_cpu(lp->tx_ring[i].misc),
                   le16_to_cpu(lp->tx_ring[i].status));
        printk("\n");
    }
    pcnet32_restart(dev, CSR0_NORMAL);

    dev->trans_start = jiffies;
    netif_wake_queue(dev);

    spin_unlock_irqrestore(&lp->lock, flags);
}

/*
 * 函数功能:
 * 1.把sk_buff的长度、基地址、数据缓冲区地址等放入tx_ring,tx_skbuff等领中,
 * 2.设置 descriptor的status 、misc值,目前具体各位干嘛的还没细看,但是代码填的值肯定是合适的
 * 3.写CSR0,设置允许中断,并启动数据包发送
 * 4.判断发送队列是否已经满了,满了就进行流量控制.(即通知网络子系统暂停数据包传输)
 * 5. 没有发现字节不够时,填充数据的行为,这个是网卡硬件自动完成的??///prob
 */
static int pcnet32_start_xmit(struct sk_buff *skb, struct net_device *dev)  //发包时会调用该函数
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;
    u16 status;
    int entry;
    unsigned long flags;
     /*
      * 两个功能,
      * 1,自旋锁的功能,
      * 2.关中断 
      * flag用于记录当前中断的状态,用于unlock时恢复之前的CPU中断状态(原来
      * 如果是关的就还是关的)spin_lock_irqsave(&lp->lock, flags);
      */

    /// 下面的函数是个宏 等于((lp)->msg_enable & NETIF_MSG_TX_QUEUED),debug level的事情
    if (netif_msg_tx_queued(lp)) {
        printk(KERN_DEBUG
               "%s: pcnet32_start_xmit() called, csr0 %4.4x.\n",
               dev->name, lp->a.read_csr(ioaddr, CSR0));
    }

    /* Default status -- will not enable Successful-TxDone
     * interrupt when that option is available to us.
     */
    status = 0x8300;

    /* Fill in a Tx ring entry */

    /* Mask to ring buffer boundary. */
    entry = lp->cur_tx & lp->tx_mod_mask;

    /* Caution: the write order is important here, set the status
     * with the "ownership" bits last. */

    lp->tx_ring[entry].length = cpu_to_le16(-skb->len);//填写length的补码 ////额。。这里有点奇怪啊。。

    lp->tx_ring[entry].misc = 0x00000000;  ////对应TMD2,具体含义暂时不看

    lp->tx_skbuff[entry] = skb;
    lp->tx_dma_addr[entry] =
        pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);//将地址翻译成物理地址
    lp->tx_ring[entry].base = cpu_to_le32(lp->tx_dma_addr[entry]);
    wmb();          /* Make sure owner changes after all others are visible */  //memory barrier
    ///其他位暂时不管,反正这么填就对了
    lp->tx_ring[entry].status = cpu_to_le16(status);//将own位置1,即将ring buffer控制权交给网卡。

    lp->cur_tx++;
    dev->stats.tx_bytes += skb->len;

    /* Trigger an immediate send poll. */
    //CSR0_TXPOLL=0x8,CSR0_INTEN=0x40 ,即将第3位和第6位置1。即触发传输包,并使网卡中断生效
    lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_TXPOLL);

    dev->trans_start = jiffies;  //DM/ jiffies是内核全局变量,表示系统启动以来是clock tick次数

    ///netif_stop_queue一般用于驱动程序通知网络子系统暂停数据包传输,从来进行实现流量控制,判断的逻辑还是不太明白
    ///是个环,检测到下一个不为空,说明已经满了
    if (lp->tx_ring[(entry + 1) & lp->tx_mod_mask].base != 0) {
        lp->tx_full = 1;
        netif_stop_queue(dev);
    }
    spin_unlock_irqrestore(&lp->lock, flags);
    return 0;
}

/**DM
 * 这是中断服务程序
 * 1.读取csr0,判断有没有错误发生,有的话进行错误处理
 * 2.写CSR3,屏蔽中断,如果NAPI没有被禁止,且不存在已被调度的NAPI,则调度NAPI(
 *  napi_struct结构挂入全局的poll_list中。并生成一个软中断。)
 * Qes: 为什么这里使用spin_lock而不用使用 spin_lock_irqsave()机制
 */
/* The PCNET32 interrupt handler. */
static irqreturn_t
pcnet32_interrupt(int irq, void *dev_id)
{
    struct net_device *dev = dev_id;
    struct pcnet32_private *lp;
    unsigned long ioaddr;
    u16 csr0;
    /// max_interrupt_work 默认值为2,insmods时可以传参数改变,推测是NAPI用来作为切换中断模式和轮询模式的接线
    /// boguscnt是用来计数的
    int boguscnt = max_interrupt_work;

    ioaddr = dev->base_addr;
    lp = netdev_priv(dev);

    spin_lock(&lp->lock);

    csr0 = lp->a.read_csr(ioaddr, CSR0);
    ///CSR0第15位置1表示网卡出错了。第11位置1表示Memory Error,第10位置1表示收到收包中断。第9位置1表示收到controller的发包中断,
    ///第8位是IDON位,init block传输完成之后这一位就一直是1了) 所以这段代码用来处理中断和错误
    while ((csr0 & 0x8f00) && --boguscnt >= 0) { /// 网卡没有错误,并且还有任务处理配额
        /////?????含义
        if (csr0 == 0xffff) {
            break;  /* PCMCIA remove happened */   ///不清楚PCMCIA具体指什么,可能是指网卡被拔了
        }
        /* Acknowledge all of the current interrupt sources ASAP. */ //ASAP =  as soon as possible
        /*
         *CSR0的 bit0~bit5 
         * 写0是无法写入的,也不会产生影响,所以下面的代码只会置INEA(interrupt enable)为0,即禁止中断防止网卡上的中断重入
         * lp->a.write_csr(ioaddr, CSR0, csr0 & ~0x004f);
         */

        ///出错处理开始(出错处理就是打印一些信息,或者对错误计数器进行累加)
        //#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR),就是进行debug devel的判断
        if (netif_msg_intr(lp))
            printk(KERN_DEBUG
                   "%s: interrupt  csr0=%#2.2x new csr=%#2.2x.\n",
                   dev->name, csr0, lp->a.read_csr(ioaddr, CSR0));

        /* Log misc errors. */
        //CSR0第14位是reserve位。搞不懂,这个地方是一个bug,应该是0x8000才对。因为手册上15位才是ERR位。
        if (csr0 & 0x4000)
            dev->stats.tx_errors++; /* Tx babble. */
            ///bit12 MISS位  Missed Frame is set by the PCnet-PCI II controller when it looses an incoming receive frame
            ///because a receive descriptorwas not available
        if (csr0 & 0x1000) {//CSR0 第12位为1,表示丢失了一个incoming frame
            /*
             * This happens when our receive ring is full. This
             * shouldn't be a problem as we will see normal rx
             * interrupts for the frames in the receive ring.  But
             * there are some PCI chipsets (I can reproduce this
             * on SP3G with Intel saturn chipset) which have
             * sometimes problems and will fill up the receive
             * ring with error descriptors.  In this situation we
             * don't get a rx interrupt, but a missed frame
             * interrupt sooner or later.
             */
            dev->stats.rx_errors++; /* Missed a Rx frame. */
        }
        if (csr0 & 0x0800) {//CSR0第11位置1表示Memory Error。
            if (netif_msg_drv(lp))//#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV),即判断是否写log
                printk(KERN_ERR
                       "%s: Bus master arbitration failure, status %4.4x.\n",
                       dev->name, csr0);
            /* unlike for the lance, there is no restart needed */
        }
        ////出错处理结束
#ifdef CONFIG_PCNET32_NAPI
        /*
         * netif_rx_schedule_prep的实现只有一句:return napi_schedule_prep(napi);
         * 也就是只有&lp->napi管作用,napi_schedule_prep也只是查看一下napi中的state中的
         * NAPI_STATE_DISABLE位是否被置。如果没有被置的话,则设置NAPI_STATE_SCHED位。即允许napi。
         */
        /*
         * netif_rx_schedule_prep的功能:
         * Test if NAPI routine is already running, and if not mark it as running.
         * This is used as a condition variable insure only one NAPI poll instance
         * runs. We also make sure there is no pending NAPI disable.
         */
        if (netif_rx_schedule_prep(dev, &lp->napi)) {
            u16 val;
            /* set interrupt masks */
            val = lp->a.read_csr(ioaddr, CSR3);//CSR3中存放的是中断屏蔽字以及deferrable control
            /**DM
             * 0x5f00设置bit 8到12,和14位,置1
             * bit14 屏蔽 babble错误 Babble is a transmitter time-out error
             * bit12 Missed Frame Mask.
             * bit11 Memory Error Mask
             * bit10 Receive Interrupt Mask
             * bit9 Transmit Interrupt Mask
             * bit8 Initialization Done Mask
             * CSR3上的屏蔽字就这么几个
             */
            val |= 0x5f00;
            ///屏蔽中断
            lp->a.write_csr(ioaddr, CSR3, val);
            mmiowb();  //这是memory_barrier,但x86实现其为空
            //其实现只有一句话: __napi_schedule(napi);,即将lp中的napi_struct结构挂入全局的poll_list中。并生成一个软中断。
            ///这里到底挂上去有哪些内容不清楚,
            ////??????看看napi 软中断 具体实现机制,然后再注释,把对napi的理解写上去
            __netif_rx_schedule(dev, &lp->napi);

            /*
                void __napi_schedule(struct napi_struct *n){
                            unsigned long flags;
                            local_irq_save(flags);
                            list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
                            __raise_softirq_irqoff(NET_RX_SOFTIRQ);
                            local_irq_restore(flags);
                }
                //注意:这里的off不是关闭,而是offset的意思。
                #define __raise_softirq_irqoff(nr) do { or_softirq_pending(1UL << (nr)); } while (0)  
            */
            break;
        }
#else
        //DM/下面是没有napi时的运行选项
        pcnet32_rx(dev, lp->napi.weight);
        if (pcnet32_tx(dev)) {
            /* reset the chip to clear the error condition, then restart */
            lp->a.reset(ioaddr);
            lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
            pcnet32_restart(dev, CSR0_START);
            netif_wake_queue(dev);
        }
#endif
        csr0 = lp->a.read_csr(ioaddr, CSR0);
    }

#ifndef CONFIG_PCNET32_NAPI
    /* Set interrupt enable. */
    ////CSR0只有 bit6写1,其他位写0都是无效的
    lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN);//开中断
#endif

    if (netif_msg_intr(lp))
        printk(KERN_DEBUG "%s: exiting interrupt, csr0=%#4.4x.\n",
               dev->name, lp->a.read_csr(ioaddr, CSR0));

    spin_unlock(&lp->lock);

    return IRQ_HANDLED;
}

/***
 * close the controller
 * 关闭timer,disable napi,设置相关寄存器值,释放申请的资源
 */
static int pcnet32_close(struct net_device *dev)
{
    unsigned long ioaddr = dev->base_addr;
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;
    ///deactivate a timer and wait for the handler to finish.
    del_timer_sync(&lp->watchdog_timer);


    netif_stop_queue(dev);
#ifdef CONFIG_PCNET32_NAPI
    napi_disable(&lp->napi);
#endif

    spin_lock_irqsave(&lp->lock, flags);

    dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);

    if (netif_msg_ifdown(lp))
        printk(KERN_DEBUG
               "%s: Shutting down ethercard, status was %2.2x.\n",
               dev->name, lp->a.read_csr(ioaddr, CSR0));

    /* We stop the PCNET32 here -- it occasionally polls memory if we don't. */
    lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);

    /*
     * Switch back to 16bit mode to avoid problems with dumb
     * DOS packet driver after a warm reboot
     */
    lp->a.write_bcr(ioaddr, 20, 4);

    spin_unlock_irqrestore(&lp->lock, flags);

    free_irq(dev->irq, dev);

    spin_lock_irqsave(&lp->lock, flags);

    pcnet32_purge_rx_ring(dev);
    pcnet32_purge_tx_ring(dev);

    spin_unlock_irqrestore(&lp->lock, flags);

    return 0;
}

static struct net_device_stats *pcnet32_get_stats(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;
    unsigned long flags;

    spin_lock_irqsave(&lp->lock, flags);
    dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);
    spin_unlock_irqrestore(&lp->lock, flags);

    return &dev->stats;
}

///todo\具体实现逻辑还没有理解,不过可以大概看出这个函数的逻辑就是产生新的filter,然后
///将其写入对应的CSR中,具体逻辑还需要继续研究,先放着
/* taken from the sunlance driver, which it took from the depca driver */
static void pcnet32_load_multicast(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    volatile struct pcnet32_init_block *ib = lp->init_block;
    volatile __le16 *mcast_table = (__le16 *)ib->filter;
    struct dev_mc_list *dmi = dev->mc_list;
    unsigned long ioaddr = dev->base_addr;
    char *addrs;
    int i;
    u32 crc;

    /* set all multicast bits */
    /***
     * 驱动中没有看到dev->flags的赋值语句,推测可能是有默认值,实测为0x1002
     * #define IFF_ALLMULTI    0x200     ///  receive all multicast packets
     * 因为flags的值没有被改过,所以条件为假
     */
    if (dev->flags & IFF_ALLMULTI) {
        ib->filter[0] = cpu_to_le32(~0U);
        ib->filter[1] = cpu_to_le32(~0U);
        lp->a.write_csr(ioaddr, PCNET32_MC_FILTER, 0xffff);
        lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+1, 0xffff);
        lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+2, 0xffff);
        lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+3, 0xffff);
        return;
    }
    /* clear the multicast filter */
    ib->filter[0] = 0;
    ib->filter[1] = 0;

    ///todo\下面添加多播地址的逻辑让人有点费解,但是可以确定他的功能就是添加多播地址,并将新的logitc address
    /////filter写入对应的CSR中
    /* Add addresses */
    for (i = 0; i < dev->mc_count; i++) {
        addrs = dmi->dmi_addr;
        dmi = dmi->next;

        /* multicast address? */
        ///\不是则回到循环开始,是就继续往后走,这里认为bit47为1为多播地址(2012年后已经改为bit0为1)
        ///\需要注意的一个问题是 struct dev_mc_list.dmi_addr只有8位,原因不明
        if (!(*addrs & 1))
            continue;
        ///\地址如果识别是逻辑地址,则进行CRC计算,产生filter位号(6bits)
        ///,用来指定filter中的位置(64个位置),如果对应位为1,那么接受该地址的包
        ///\参数6表示值使用addrs的低六位
        crc = ether_crc_le(6, addrs);
        crc = crc >> 26;  ////只需要crc的高六位
        mcast_table[crc >> 4] |= cpu_to_le16(1 << (crc & 0xf));
    }
    for (i = 0; i < 4; i++)
        lp->a.write_csr(ioaddr, PCNET32_MC_FILTER + i,
                le16_to_cpu(mcast_table[i]));
    return;
}

/*
 * Set or clear the multicast filter for this adaptor.
 */
static void pcnet32_set_multicast_list(struct net_device *dev)
{
    unsigned long ioaddr = dev->base_addr, flags;
    struct pcnet32_private *lp = netdev_priv(dev);
    int csr15, suspended;

    spin_lock_irqsave(&lp->lock, flags);
    suspended = pcnet32_suspend(dev, &flags, 0);
    csr15 = lp->a.read_csr(ioaddr, CSR15);
    if (dev->flags & IFF_PROMISC) {
        /* Log any net taps. */
        if (netif_msg_hw(lp))
            printk(KERN_INFO "%s: Promiscuous mode enabled.\n",
                   dev->name);
        lp->init_block->mode =
            cpu_to_le16(0x8000 | (lp->options & PCNET32_PORT_PORTSEL) <<
                7);
        lp->a.write_csr(ioaddr, CSR15, csr15 | 0x8000);
    } else {
        lp->init_block->mode =
            cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
        lp->a.write_csr(ioaddr, CSR15, csr15 & 0x7fff);
        pcnet32_load_multicast(dev);
    }

    if (suspended) {
        int csr5;
        /* clear SUSPEND (SPND) - CSR5 bit 0 */
        csr5 = lp->a.read_csr(ioaddr, CSR5);
        lp->a.write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
    } else {
        lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
        pcnet32_restart(dev, CSR0_NORMAL);
        netif_wake_queue(dev);
    }

    spin_unlock_irqrestore(&lp->lock, flags);
}

/* This routine assumes that the lp->lock is held */
////下面的函数做的是mii读相关的工作,但是因为 lp->mii == 0, 所以什么都不会做
static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;
    u16 val_out;

    if (!lp->mii)
        return 0;

    lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
    val_out = lp->a.read_bcr(ioaddr, 34);

    return val_out;
}

/* This routine assumes that the lp->lock is held */
////下面的函数做的是mii写相关的工作,但是因为 lp->mii == 0, 所以什么都不会做
static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long ioaddr = dev->base_addr;

    if (!lp->mii)
        return;

    lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
    lp->a.write_bcr(ioaddr, 34, val);
}

static int pcnet32_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int rc;
    unsigned long flags;

    /* SIOC[GS]MIIxxx ioctls */
    if (lp->mii) {
        spin_lock_irqsave(&lp->lock, flags);
        rc = generic_mii_ioctl(&lp->mii_if, if_mii(rq), cmd, NULL);
        spin_unlock_irqrestore(&lp->lock, flags);
    } else {
        rc = -EOPNOTSUPP;
    }

    return rc;
}

static int pcnet32_check_otherphy(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    struct mii_if_info mii = lp->mii_if;
    u16 bmcr;
    int i;

    for (i = 0; i < PCNET32_MAX_PHYS; i++) {
        if (i == lp->mii_if.phy_id)
            continue;   /* skip active phy */
        if (lp->phymask & (1 << i)) {
            mii.phy_id = i;
            if (mii_link_ok(&mii)) {
                /* found PHY with active link */
                if (netif_msg_link(lp))
                    printk(KERN_INFO
                           "%s: Using PHY number %d.\n",
                           dev->name, i);

                /* isolate inactive phy */
                bmcr =
                    mdio_read(dev, lp->mii_if.phy_id, MII_BMCR);
                mdio_write(dev, lp->mii_if.phy_id, MII_BMCR,
                       bmcr | BMCR_ISOLATE);

                /* de-isolate new phy */
                bmcr = mdio_read(dev, i, MII_BMCR);
                mdio_write(dev, i, MII_BMCR,
                       bmcr & ~BMCR_ISOLATE);

                /* set new phy address */
                lp->mii_if.phy_id = i;
                return 1;
            }
        }
    }
    return 0;
}

/*
 * Show the status of the media.  Similar to mii_check_media however it
 * correctly shows the link speed for all (tested) pcnet32 variants.
 * Devices with no mii just report link state without speed.
 *
 * Caller is assumed to hold and release the lp->lock.
 */

///\额。。。判断curr_link那块让人看不懂,
static void pcnet32_check_media(struct net_device *dev, int verbose)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    int curr_link;
    int prev_link = netif_carrier_ok(dev) ? 1 : 0;
    u32 bcr9;

    if (lp->mii) {
        curr_link = mii_link_ok(&lp->mii_if);
    } else {
        ulong ioaddr = dev->base_addr;  /* card base I/O address */
        curr_link = (lp->a.read_bcr(ioaddr, 4) != 0xc0);//BCR4是网卡指示灯的状态。
    }

    if (!curr_link) {//链接已断
        if (prev_link || verbose) {
            netif_carrier_off(dev);//这将触发一个消息,通知上层链路已断,该功能是通过workqueue完成的。
            if (netif_msg_link(lp))
                printk(KERN_INFO "%s: link down\n", dev->name);
        }
        if (lp->phycount > 1) {
            curr_link = pcnet32_check_otherphy(dev);
            prev_link = 0;
        }
    } else if (verbose || !prev_link) {
        netif_carrier_on(dev);
        if (lp->mii) {
            if (netif_msg_link(lp)) {
                struct ethtool_cmd ecmd;
                mii_ethtool_gset(&lp->mii_if, &ecmd);
                printk(KERN_INFO
                       "%s: link up, %sMbps, %s-duplex\n",
                       dev->name,
                       (ecmd.speed == SPEED_100) ? "100" : "10",
                       (ecmd.duplex ==
                    DUPLEX_FULL) ? "full" : "half");
            }
            bcr9 = lp->a.read_bcr(dev->base_addr, 9);
            if ((bcr9 & (1 << 0)) != lp->mii_if.full_duplex) {
                if (lp->mii_if.full_duplex)
                    bcr9 |= (1 << 0);
                else
                    bcr9 &= ~(1 << 0);
                lp->a.write_bcr(dev->base_addr, 9, bcr9);
            }
        } else {
            if (netif_msg_link(lp))
                printk(KERN_INFO "%s: link up\n", dev->name);
        }
    }
}

/*
 * Check for loss of link and link establishment.
 * Can not use mii_check_media because it does nothing if mode is forced.
 */
static void pcnet32_watchdog(struct net_device *dev)
{
    struct pcnet32_private *lp = netdev_priv(dev);
    unsigned long flags;

    /* Print the link status if it has changed */
    spin_lock_irqsave(&lp->lock, flags);
    ///下面只是打印信息
    pcnet32_check_media(dev, 0);
    spin_unlock_irqrestore(&lp->lock, flags);
    ////重新启动计时器
    mod_timer(&(lp->watchdog_timer), PCNET32_WATCHDOG_TIMEOUT);
}

///suspend,推测是系统为了省电,在不需要网络传输的时候断电
static int pcnet32_pm_suspend(struct pci_dev *pdev, pm_message_t state)
{
    struct net_device *dev = pci_get_drvdata(pdev);

    if (netif_running(dev)) {
        ///Mark device as removed from system and therefore no longer available.
        netif_device_detach(dev);
        ///close the controller
        pcnet32_close(dev);
    }
    ///pci_save_state - save the PCI configuration space of a device before suspending
    pci_save_state(pdev);
    ///pci_choose_state - Returns PCI power state suitable for given device and given system
    ///pci_set_power_state - Set the power state of a PCI device
    pci_set_power_state(pdev, pci_choose_state(pdev, state));
    return 0;
}


static int pcnet32_pm_resume(struct pci_dev *pdev)
{
    struct net_device *dev = pci_get_drvdata(pdev);

    pci_set_power_state(pdev, PCI_D0);
    ///pci_restore_state - Restore the saved state of a PCI device
    pci_restore_state(pdev);

    if (netif_running(dev)) {
        pcnet32_open(dev);
        ///Mark device as attached from system and restart if needed.
        netif_device_attach(dev);
    }
    return 0;
}

///释放该设备申请的所有资源,unregister the net_device
static void __devexit pcnet32_remove_one(struct pci_dev *pdev)
{
    struct net_device *dev = pci_get_drvdata(pdev);

    if (dev) {
        struct pcnet32_private *lp = netdev_priv(dev);

        unregister_netdev(dev);
        pcnet32_free_ring(dev);
        release_region(dev->base_addr, PCNET32_TOTAL_SIZE);
        pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
                    lp->init_block, lp->init_dma_addr);
        free_netdev(dev);
        pci_disable_device(pdev);
        pci_set_drvdata(pdev, NULL);
    }
}

static struct pci_driver pcnet32_driver = {
    .name = DRV_NAME,
    .probe = pcnet32_probe_pci,
    .remove = __devexit_p(pcnet32_remove_one),
    .id_table = pcnet32_pci_tbl,///id_table是一个结构体数组,用来存放驱动程序适用的设备信息
    .suspend = pcnet32_pm_suspend,
    .resume = pcnet32_pm_resume,
};

/* An additional parameter that may be passed in... */
static int debug = -1;
static int tx_start_pt = -1;
static int pcnet32_have_pci;

module_param(debug, int, 0);
MODULE_PARM_DESC(debug, DRV_NAME " debug level");
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work,
         DRV_NAME " maximum events handled per interrupt");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak,
         DRV_NAME " copy breakpoint for copy-only-tiny-frames");
module_param(tx_start_pt, int, 0);
MODULE_PARM_DESC(tx_start_pt, DRV_NAME " transmit start point (0-3)");
module_param(pcnet32vlb, int, 0);
MODULE_PARM_DESC(pcnet32vlb, DRV_NAME " Vesa local bus (VLB) support (0/1)");
module_param_array(options, int, NULL, 0);
MODULE_PARM_DESC(options, DRV_NAME " initial option setting(s) (0-15)");
module_param_array(full_duplex, int, NULL, 0);
MODULE_PARM_DESC(full_duplex, DRV_NAME " full duplex setting(s) (1)");
/* Module Parameter for HomePNA cards added by Patrick Simmons, 2004 */
module_param_array(homepna, int, NULL, 0);
MODULE_PARM_DESC(homepna,
         DRV_NAME
         " mode for 79C978 cards (1 for HomePNA, 0 for Ethernet, default Ethernet");

MODULE_AUTHOR("Thomas Bogendoerfer");
MODULE_DESCRIPTION("Driver for PCnet32 and PCnetPCI based ethercards");
MODULE_LICENSE("GPL");

#define PCNET32_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
/*
2897         NETIF_MSG_DRV           = 0x0001,
2898         NETIF_MSG_PROBE         = 0x0002,
2899         NETIF_MSG_LINK          = 0x0004,
2900         NETIF_MSG_TIMER         = 0x0008,
2901         NETIF_MSG_IFDOWN        = 0x0010,
2902         NETIF_MSG_IFUP          = 0x0020,
2903         NETIF_MSG_RX_ERR        = 0x0040,
2904         NETIF_MSG_TX_ERR        = 0x0080,
2905         NETIF_MSG_TX_QUEUED     = 0x0100,
2906         NETIF_MSG_INTR          = 0x0200,
2907         NETIF_MSG_TX_DONE       = 0x0400,
2908         NETIF_MSG_RX_STATUS     = 0x0800,
2909         NETIF_MSG_PKTDATA       = 0x1000,
2910         NETIF_MSG_HW            = 0x2000,
2911         NETIF_MSG_WOL           = 0x4000,
*/
/// PCNET32_MSG_DEFAULT =  0111
static int __init pcnet32_init_module(void)
{
printk(KERN_INFO "%s", version);
    /// 如果没有设置debug,则使用默认的debug level
    /*****
     * pcnet32_dubug 和debug都是int型变量,表示消息级别,其中的某些使用的位,每一位对
     * 应是否打印一种消息,在需要决定是否打印某种消息时,如果该位为1则打印,为0则不答应.
     * netif_msg_init(debug, PCNET32_MSG_DEFAULT)是来初始化pcnet32_debug,
     * 如果传入的debug小于0或者大于sizeof(u32)*8则返回PCNET32_MSG_DEFAULT(即默认的debug level),
     * 如果debug = 0,返回0,其他情况返回  ( 1 << debug_value - 1 )
     */
    pcnet32_debug = netif_msg_init(debug, PCNET32_MSG_DEFAULT);
////???????
    if ((tx_start_pt >= 0) && (tx_start_pt <= 3))
        tx_start = tx_start_pt;

    /* find the PCI devices */
    ///注册PCI驱动,成功返回0,失败返回负值,pcnet32_have_pci表示当前系统存在PCI子系统(不一定存在驱动支持的网卡设备,因为注册驱动时是可以没有网卡设备的)
    if (!pci_register_driver(&pcnet32_driver))
        pcnet32_have_pci = 1;

    /* should we find any remaining VLbus devices ? */
    //// 不用
    if (pcnet32vlb)
        pcnet32_probe_vlbus(pcnet32_portlist);

    /* 
     * cards_found定义是static int的全局变量(因为是static所以初始值为0,用来表示本驱 
     * 动探测到的网卡数量 (即本驱动控制的网卡的数量)
     * pcnet32_probe_pci中调用的探测函数pcnet32_probe1,每完成对一个NIC的探测,都会
     * 执行cards_found++ ,每次插入一个设备,如果PCI子系统发现网卡是本驱动支持的网卡
     * 型号,就会调用一次pcnet32_probe_pci
     * 下面的语句功能:探测到网卡,并且debug level设置了NET_IF_MSG_PROBE(探测消息)则打印cards found 消息
     */
    if (cards_found && (pcnet32_debug & NETIF_MSG_PROBE))
        printk(KERN_INFO PFX "%d cards_found.\n", cards_found);


    return (pcnet32_have_pci + cards_found) ? 0 : -ENODEV;
}

////释放所有已经获得的资源,注销驱动
///资源主要是各种内存缓冲区,还有把驱动unregist
///因为单网卡,所以while循环是不需要的
static void __exit pcnet32_cleanup_module(void)
{
    struct net_device *next_dev;

    while (pcnet32_dev) {
        struct pcnet32_private *lp = netdev_priv(pcnet32_dev);
        next_dev = lp->next;
        unregister_netdev(pcnet32_dev);
        pcnet32_free_ring(pcnet32_dev);
        release_region(pcnet32_dev->base_addr, PCNET32_TOTAL_SIZE);
        pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
                    lp->init_block, lp->init_dma_addr);
        free_netdev(pcnet32_dev);
        pcnet32_dev = next_dev;
    }

    if (pcnet32_have_pci)
        pci_unregister_driver(&pcnet32_driver);
}

module_init(pcnet32_init_module);
module_exit(pcnet32_cleanup_module);

/*
 * Local variables:
 *  c-indent-level: 4
 *  tab-width: 8
 * End:
 */

猜你喜欢

转载自blog.csdn.net/damontive/article/details/79622110