目标追踪概述

单目标跟踪 

【任务描述】

 视觉目标(单目标)跟踪任务就是在给定某视频序列初始帧的目标大小与位置的情况下,预测后续帧中该目标的大小与位置。这一基本任务流程可以按如下的框架划分:


 输入初始化目标框,在下一帧中产生众多候选框(Motion Model),提取这些候选框的特征(Feature Extractor),然后对这些候选框评分(Observation Model),最后在这些评分中找一个得分最高的候选框作为预测的目标(Prediction A),或者对多个预测值进行融合(Ensemble)得到更优的预测目标。


        根据如上的框架,我们可以把目标跟踪划分为5项主要的研究内容. (1)运动模型:如何产生众多的候选样本。(2)特征提取:利用何种特征表示目标。(3)观测模型:如何为众多候选样本进行评分。

运动模型(Motion Model):生成候选样本的速度与质量直接决定了跟踪系统表现的优劣。常用的有两种方法:粒子滤波(Particle Filter)和滑动窗口(Sliding Window)。粒子滤波是一种序贯贝叶斯推断方法,通过递归的方式推断目标的隐含状态。而滑动窗口是一种穷举搜索方法,它列出目标附近的所有可能的样本作为候选样本。

特征提取(Feature Extractor): 鉴别性的特征表示是目标跟踪的关键之一。常用的特征被分为两种类型:手工设计的特征(Hand-crafted feature)和深度特征(Deep feature)。常用的手工设计的特征有灰度特征(Gray),方向梯度直方图(HOG),哈尔特征(Haar-like),尺度不变特征(SIFT)等。与人为设计的特征不同,深度特征是通过大量的训练样本学习出来的特征,它比手工设计的特征更具有鉴别性。因此,利用深度特征的跟踪方法通常很轻松就能获得一个不错的效果。

观测模型(Observation Model):大多数的跟踪方法主要集中在这一块的设计上。根据不同的思路,观测模型可分为两类:生成式模型(Generative Model)和判别式模型(Discriminative Model). 生成式模型通常寻找与目标模板最相似的候选作为跟踪结果,这一过程可以视为模板匹配。常用的理论方法包括:子空间,稀疏表示,字典学习等。而判别式模型通过训练一个分类器去区分目标与背景,选择置信度最高的候选样本作为预测结果。判别式方法已经成为目标跟踪中的主流方法,因为有大量的机器学习方法可以利用。常用的理论方法包括:逻辑回归,岭回归,支持向量机,多示例学习,相关滤波等。

【主要干扰】





猜你喜欢

转载自blog.csdn.net/Emiedon/article/details/80277508