有限长序列的分类

基于共轭对称的分类

  模运算给出了对称的一种定义
x [ n ] = x c s [ n ] + x c a [ n ] x[n]=x_{cs}[n]+x_{ca}[n]
圆周共轭对称
x c s [ n ] = 1 2 ( x [ n ] + x [ < n > N ] ) ,   0 n N 1 x_{cs}[n]=\frac{1}{2}(x[n]+x^{*}[<-n>_N]), \, 0\leq n \leq N-1
圆周共轭反对称
x c a [ n ] = 1 2 ( x [ n ] x [ < n > N ] ) ,   0 n N 1 x_{ca}[n]=\frac{1}{2}(x[n]-x^{*}[<-n>_N]), \, 0\leq n \leq N-1

例:考虑长度为 4 4 的有限长序列, 0 n 3 0\leq n \leq 3 :
u [ n ] = { 1 + j 4 , 2 + j 3 , 4 j 2 , 5 j 6 } u[n]=\{1+j4,-2+j3,4-j2,-5-j6\}

u [ n ] = { 1 j 4 , 2 j 3 , 4 + j 2 , 5 + j 6 } u^{*}[n]=\{1-j4,-2-j3,4+j2,-5+j6\}
u [ < n > 4 ] = { 1 j 4 , 5 + j 6 , 4 + j 2 , 2 j 3 } u^{*}[<-n>_4]=\{1-j4,-5+j6,4+j2,-2-j3\}
所以
u c s [ n ] = { 1 , 3.5 + j 4.5 , 4 , 3.5 j 4.5 } u_{cs}[n]=\{1,-3.5+j4.5,4,-3.5-j4.5\}
u c a [ n ] = { j 4 , 1.5 j 1.5 , j 2 , 1.5 j 1.5 } u_{ca}[n]=\{j4,1.5-j1.5,-j2,-1.5-j1.5\}

基于几何对称的分类

对称序列:
x [ n ] = x [ N 1 n ] x[n]=x[N-1-n]
反对称序列
x [ n ] = x [ N 1 n ] x[n]=-x[N-1-n]
由于 N N 可以为偶数,也可以为奇数,所以存在四种类型的几何对称的定义。

奇长度的对称序列

考虑长度为 5 5 的序列
x [ n ] = { 1 , 2 , 3 , 2 , 1 } x[n]=\{\mathop{1}\limits_{\uparrow}, 2, 3, 2, 1\}
则其傅里叶变换为
X ( e j w ) = 1 + 2 e j w + 3 e j 2 w + 2 e j 3 w + e j 4 w = e j 2 w ( e j 2 w + 2 e j w + 3 + 2 e j w + e j 2 w ) = e j 2 w ( 3 + 4 c o s w + 2 c o w 2 w ) = e j N 1 2 ( x [ N 1 2 ] + 2 n = 1 N 1 2 x [ N 1 2 n ] c o s ( n w ) ) \begin{aligned} X(e^{jw})&=1+2e^{-jw}+3e^{-j2w}+2e^{-j3w}+e^{-j4w} \\ &=e^{-j2w}(e^{j2w}+2e^{jw}+3+2e^{-jw}+e^{-j2w}) \\ &=e^{-j2w}(3+4cosw+2cow2w) \\ &=e^{-j\frac{N-1}{2}}(x[\frac{N-1}{2}]+2\sum_{n=1}^{\frac{N-1}{2}}x[\frac{N-1}{2}-n]cos(nw)) \end{aligned}

偶长度的对称序列

考虑长度为 4 4 的序列
x [ n ] = { 1 , 2 , 2 , 1 } x[n]=\{\mathop{1}\limits_{\uparrow},2,2,1\}
其傅里叶变换为
X ( e j w ) = 1 + 2 e j w + 2 e j 2 w + e j 3 w = e j 3 w 2 ( e j 3 w 2 + 2 e j w 2 + 2 e j w 2 + e j 3 w 2 ) = j e j 3 w 2 ( 4 c o s ( w / 2 ) + 2 c o s ( 3 w / 2 ) ) = j e j ( N 1 ) w 2 ( 2 n = 1 N 2 x [ N 2 n ] c o s ( ( n 1 / 2 ) w ) ) \begin{aligned} X(e^{jw})&=1+2e^{-jw}+2e^{-j2w}+e^{-j3w} \\ &=e^{-j\frac{3w}{2}}(e^{j\frac{3w}{2}}+2e^{j\frac{w}{2}}+2e^{-j\frac{w}{2}}+e^{-j\frac{3w}{2}}) \\ &=je^{-j\frac{3w}{2}}(4cos(w/2)+2cos(3w/2)) \\ &=je^{-j\frac{(N-1)w}{2}}(2\sum_{n=1}^{\frac{N}{2}}x[\frac{N}{2}-n]cos((n-1/2)w)) \end{aligned}

奇长度的反对称序列

同理可推导出
X ( e j w ) = j e j N 1 2 w ( 2 1 N 1 2 x [ N 1 2 n ] s i n ( n w ) ) X(e^{jw})=je^{-j\frac{N-1}{2}w}(2\sum_{1}^{\frac{N-1}{2}}x[\frac{N-1}{2}-n]sin(nw))

偶长度的反对称序列

同理可推导出
X ( e j w ) = j e j N 1 2 w ( 2 1 N 2 x [ N 2 n ] s i n ( ( n 1 / 2 ) w ) ) X(e^{jw})=je^{-j\frac{N-1}{2}w}(2\sum_{1}^{\frac{N}{2}}x[\frac{N}{2}-n]sin((n-1/2)w))

猜你喜欢

转载自blog.csdn.net/The_last_knight/article/details/84932524
今日推荐