python手写图片识别MNIST

MNIST(Modified National Institute of Standards and Technology)

MNIST被称作是计算机视觉的新手村,相当于神经网络CNN版的helloword,也是TensorFlow的初体验。提供的数据集是28*28的灰度矩阵,要分析并识别出对应原来手写图片的数字。

载入数据集

    train = pd.read_csv('./input/train.csv')
    test = pd.read_csv('./input/test.csv')

训练集数字总览

    # 数字出现总数求和,柱状图
    g = sns.countplot(Y_train)
    plt.show()


各个数字出现的总数大致相等,没有极端情况

原始数据处理

因为训练集是28*28的灰度矩阵,取值范围是0-255的整数,数字越大对应的像素点越暗,因此/255转化成float

    X_train = X_train / 255.0
    test = test / 255.0

    X_train = X_train.values.reshape(-1, 28, 28, 1)
    test = test.values.reshape(-1, 28, 28, 1)
    Y_train = to_categorical(Y_train, num_classes=10)

CNN建模

因为训练集是28*28的灰度矩阵,取值范围是0-255的整数,数字越大对应的像素点越暗,因此/255转化成float

    model_begin = datetime.now()
    print(str(model_begin) + " model begin")

    model = Sequential()
    model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
                     activation='relu', input_shape=(28, 28, 1)))
    model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
                     activation='relu'))
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
                     activation='relu'))
    model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
                     activation='relu'))
    model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation="softmax"))

    optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)

    model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])

    learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
                                                patience=3,
                                                verbose=1,
                                                factor=0.5,
                                                min_lr=0.00001)
    # epochs=1 ,- 340s - loss: 0.4151 - acc: 0.8693 - val_loss: 0.0748 - val_acc: 0.9779
    # epochs=10,- 309s - loss: 0.0633 - acc: 0.9823 - val_loss: 0.0222 - val_acc: 0.9945
    epochs = 1
    batch_size = 86

    datagen = ImageDataGenerator(
        featurewise_center=False,  
        samplewise_center=False,  
        featurewise_std_normalization=False,  
        samplewise_std_normalization=False,  
        zca_whitening=False,  
        rotation_range=10,  
        zoom_range=0.1,  
        width_shift_range=0.1,  
        height_shift_range=0.1,  
        horizontal_flip=False,  
        vertical_flip=False)  

    datagen.fit(X_train)

    history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
                                  epochs=epochs, validation_data=(X_val, Y_val),
                                  verbose=2, steps_per_epoch=X_train.shape[0] // batch_size
                                  , callbacks=[learning_rate_reduction])

训练集误差分析

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

    plt.savefig('./output_cnn/matrix.png')
    plt.show()


x轴是预测的数字,y轴是真实的数字。可以看出把5预测成6,3预测成8的情况较多,可能是因为这几对数字形状相近,在手写的情况下存在一定的误导

查看预测错误的数字的真是图片

    n = 0
    nrows = 3
    ncols = 3
    fig, ax = plt.subplots(nrows, ncols, sharex=True, sharey=True)
    for row in range(nrows):
        for col in range(ncols):
            error = errors_index[n]
            ax[row, col].imshow((img_errors[error]).reshape((28, 28)))
            ax[row, col].set_title("Predicted label :{}\nTrue label :{}".format(pred_errors[error], obs_errors[error]))
            n += 1

    plt.savefig('./output_cnn/errors.png')
    plt.show()


可以看出部分手写数字比较潦草,人眼看的话,也可能存在错误的情况

输出预测结果

    nresults = model.predict(test)
    results = np.argmax(results, axis=1)
    results = pd.Series(results, name="Label")
    submission = pd.concat([pd.Series(range(1, 28001), name="ImageId"), results], axis=1)
    submission.to_csv("./output_cnn/mnist_cnn.csv", index=False)

输出日志

2019-05-12 18:43:05.861004 digit-recongizer begin
2019-05-12 18:43:09.434510 model begin
Epoch 1/1
2019-05-12 18:43:10.537447: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
 - 306s - loss: 0.4166 - acc: 0.8679 - val_loss: 0.0808 - val_acc: 0.9726
2019-05-12 18:48:16.955573 error begin
2019-05-12 18:48:25.481250 matrix begin
2019-05-12 18:48:26.292335 display_errors begin
2019-05-12 18:48:27.402511 predict begin
2019-05-12 18:49:28.578289 digit-recongizer end

上传Kaggle预测结果集

第二次修改epochs = 10


Using TensorFlow backend.
2019-05-19 13:10:45.624923 digit-recongizer begin
2019-05-19 13:10:49.557691 model begin
Epoch 1/10
2019-05-19 13:10:51.337148: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
 - 311s - loss: 0.4112 - acc: 0.8695 - val_loss: 0.0765 - val_acc: 0.9771
Epoch 2/10
 - 294s - loss: 0.1281 - acc: 0.9622 - val_loss: 0.0400 - val_acc: 0.9860
Epoch 3/10
 - 298s - loss: 0.0940 - acc: 0.9717 - val_loss: 0.0367 - val_acc: 0.9895
Epoch 4/10
 - 318s - loss: 0.0785 - acc: 0.9765 - val_loss: 0.0317 - val_acc: 0.9895
Epoch 5/10
 - 303s - loss: 0.0701 - acc: 0.9798 - val_loss: 0.0384 - val_acc: 0.9888
Epoch 6/10
 - 301s - loss: 0.0678 - acc: 0.9799 - val_loss: 0.0315 - val_acc: 0.9910
Epoch 7/10
 - 291s - loss: 0.0635 - acc: 0.9811 - val_loss: 0.0342 - val_acc: 0.9898
Epoch 8/10
 - 293s - loss: 0.0585 - acc: 0.9830 - val_loss: 0.0312 - val_acc: 0.9921
Epoch 9/10
 - 292s - loss: 0.0606 - acc: 0.9829 - val_loss: 0.0202 - val_acc: 0.9943
Epoch 10/10
 - 309s - loss: 0.0633 - acc: 0.9823 - val_loss: 0.0222 - val_acc: 0.9945
2019-05-19 14:01:01.464350 error begin
2019-05-19 14:01:09.997218 matrix begin
2019-05-19 14:01:10.969481 display_errors begin
2019-05-19 14:01:13.028658 predict begin
2019-05-19 14:02:23.559788 digit-recongizer end

可以看到随着epochs的增加,准确度在缓慢提升,不过花的时间也是越来越长

查看系统资源


mbp几乎在cpu满负荷的情况下跑了1个小时,epochs每一个轮次大药5分钟,10次接近一小时

上传Kaggle预测结果集


准确率达到了0.992,暂时先这样,后面再看有没有其他的调参优化方法

完整代码,数据集下载

githup源码

猜你喜欢

转载自www.cnblogs.com/wanli002/p/10888379.html