自然语言语言处理(二):文本的向量化

原文链接: https://www.cnblogs.com/pinard/p/6744056.html

一、词袋模型
词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重。而权重与词在文本中出现的频率有关。
词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化。向量化完毕后一般也会使用TF-IDF进行特征的权重修正,再将特征进行标准化。
总结下词袋模型的三部曲:分词(tokenizing),统计修订词特征值(counting)与标准化(normalizing)。
2. 词袋模型之向量化
词袋模型的统计词频这一步,我们会得到该文本中所有词的词频,有了词频,我们就可以用词向量表示这个文本。这里我们举一个例子,例子直接用scikit-learn的CountVectorizer类来完成,这个类可以帮我们完成文本的词频统计与向量化,代码如下:

from sklearn.feature_extraction.text import CountVectorizer  
vectorizer=CountVectorizer()
corpus=["I come to China to travel", 
    "This is a car polupar in China",          
    "I love tea and Apple ",   
    "The work is to write some papers in science"] 
print vectorizer.fit_transform(corpus)

在这里插入图片描述
可以看出4个文本的词频已经统计出,在输出中,左边的括号中的第一个数字是文本的序号,第2个数字是词的序号,注意词的序号是基于所有的文档的。第三个数字就是我们的词频。
我们可以进一步看看每个文本的词向量特征和各个特征代表的词,代码如下:

print(vectorizer.fit_transform(corpus).toarray())
print(vectorizer.get_feature_names())

在这里插入图片描述
可以看到我们一共有19个词,所以4个文本都是19维的特征向量。而每一维的向量依次对应了下面的19个词。另外由于词"I"在英文中是停用词,不参加词频的统计。
由于大部分的文本都只会使用词汇表中的很少一部分的词,因此我们的词向量中会有大量的0。也就是说词向量是稀疏的。在实际应用中一般使用稀疏矩阵来存储。
这个方法的弊端就是会导致稀疏矩阵的产生。并且产生的维度十分巨大。

猜你喜欢

转载自blog.csdn.net/weixin_41611045/article/details/102737980
今日推荐