k8s学习笔记(3)--- kubernetes核心技术概念

1.容器(Container)

        Container(容器)是一种便携式、轻量级的操作系统级虚拟化技术。它使用 namespace 隔离不同的软件运行环境,并通过镜像自包含软件的运行环境,从而使得容器可以很方便的在任何地方运行。

2.API对象

        API对象是K8s集群中的管理操作单元。K8s集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作。例如副本集Replica Set对应的API对象是RS。

3.集群(Cluster)

        集群是指由Kubernetes使用一系列的物理机、虚拟机和其他基础资源来运行你的应用程序的集合

4.Master

       master是cluster的大脑,他的主要职责是调度,即决定将应用放在那里运行。master运行linux操作系统,可以是物理机或者虚拟机。为了实现高可用,可以运行多个master。

5.Node

        node的职责是运行容器应用。node由master管理,node负责监控并汇报容器的状态,同时根据master的要求管理容器的生命周期

       K8s集群中的计算能力由Node提供,最初Node称为服务节点Minion,后来改名为Node。K8s集群中的Node也就等同于Mesos集群中的Slave节点,是所有Pod运行所在的工作主机,可以是物理机也可以是虚拟机。不论是物理机还是虚拟机,工作主机的统一特征是上面要运行kubelet管理节点上运行的容器。

6.Pod

       Pod是在K8s集群中运行部署应用或服务的最小单元,它是可以支持多容器的。一个pod对应一个由相关容器和卷组成的容器组

       Pod是K8s集群中所有业务类型的基础,可以看作运行在K8s集群中的小机器人,不同类型的业务就需要不同类型的小机器人去执行。目前K8s中的业务主要可以分为长期伺服型(long-running)、批处理型(batch)、节点后台支撑型(node-daemon)和有状态应用型(stateful application);分别对应的小机器人控制器为Deployment、Job、DaemonSet和PetSet。

7.复制控制器(Replication Controller,RC)

       RC是为了保证一定数量被指定的Pod的复制品在任何时间都能正常工作,它不仅允许复制的系统易于扩展,还会处理当pod在机器在重启或发生故障的时候再次创建一个

       RC是K8s集群中最早的保证Pod高可用的API对象。通过监控运行中的Pod来保证集群中运行指定数目的Pod副本。指定的数目可以是多个也可以是1个;少于指定数目,RC就会启动运行新的Pod副本;多于指定数目,RC就会杀死多余的Pod副本。即使在指定数目为1的情况下,通过RC运行Pod也比直接运行Pod更明智,因为RC也可以发挥它高可用的能力,保证永远有1个Pod在运行。RC是K8s较早期的技术概念,只适用于长期伺服型的业务类型,比如控制小机器人提供高可用的Web服务。

8.副本集(Replica Set,RS)

       ReplicaSet(RS)是Replication Controller(RC)的升级版本。ReplicaSet 和 Replication Controller之间的唯一区别是对选择器的支持。ReplicaSet支持labels user guide中描述的set-based选择器要求, 而Replication Controller仅支持equality-based的选择器要求。
**

9.部署(Deployment)

       deployment可以管理pod的多个副本,并确保pod按照期望的状态运行

       部署表示用户对K8s集群的一次更新操作。部署是一个比RS应用模式更广的API对象,可以是创建一个新的服务,更新一个新的服务,也可以是滚动升级一个服务。滚动升级一个服务,实际是创建一个新的RS,然后逐渐将新RS中副本数增加到理想状态,将旧RS中的副本数减小到0的复合操作;这样一个复合操作用一个RS是不太好描述的,所以用一个更通用的Deployment来描述。以K8s的发展方向,未来对所有长期伺服型的的业务的管理,都会通过Deployment来管理。

10.服务(Service)

       一个service定义了访问pod的方式,就像单个固定的IP地址和与其相对应的DNS名之间的关系

       RC、RS和Deployment只是保证了支撑服务的微服务Pod的数量,但是没有解决如何访问这些服务的问题。一个Pod只是一个运行服务的实例,随时可能在一个节点上停止,在另一个节点以一个新的IP启动一个新的Pod,因此不能以确定的IP和端口号提供服务。要稳定地提供服务需要服务发现和负载均衡能力。服务发现完成的工作,是针对客户端访问的服务,找到对应的的后端服务实例。在K8s集群中,客户端需要访问的服务就是Service对象。每个Service会对应一个集群内部有效的虚拟IP,集群内部通过虚拟IP访问一个服务。在K8s集群中微服务的负载均衡是由Kube-proxy实现的。Kube-proxy是K8s集群内部的负载均衡器。它是一个分布式代理服务器,在K8s的每个节点上都有一个;这一设计体现了它的伸缩性优势,需要访问服务的节点越多,提供负载均衡能力的Kube-proxy就越多,高可用节点也随之增多。与之相比,我们平时在服务器端做个反向代理做负载均衡,还要进一步解决反向代理的负载均衡和高可用问题。

11.任务(Job)

       Job 负责批量处理短暂的一次性任务,用于运行结束就删除的应用,而其他controller中的pod通常是长期持续运行的

       Job是K8s用来控制批处理型任务的API对象。批处理业务与长期伺服业务的主要区别是批处理业务的运行有头有尾,而长期伺服业务在用户不停止的情况下永远运行。Job管理的Pod根据用户的设置把任务成功完成就自动退出了。成功完成的标志根据不同的spec.completions策略而不同:单Pod型任务有一个Pod成功就标志完成;定数成功型任务保证有N个任务全部成功;工作队列型任务根据应用确认的全局成功而标志成功。

12.定时任务(CronJob)

       CronJob即定时任务,在指定的时间周期运行指定的任务,就类似于Linux系统的crontab。

13.后台支撑服务集(DaemonSet)

       一个DaemonSet对象能确保其创建的Pod在集群中的每一台(或指定)Node上都运行一个副本

       长期伺服型和批处理型服务的核心在业务应用,可能有些节点运行多个同类业务的Pod,有些节点上又没有这类Pod运行;而后台支撑型服务的核心关注点在K8s集群中的节点(物理机或虚拟机),要保证每个节点上都有一个此类Pod运行。节点可能是所有集群节点也可能是通过nodeSelector选定的一些特定节点。典型的后台支撑型服务包括,存储,日志和监控等在每个节点上支持K8s集群运行的服务。

14.Statefulset

       StatefulSet 用于支持部署有状态服务,能够保证pod的每个副本在整个生命周期中PodName 和HostName 是不变的,同时保证副本按照固定的顺序启动、更新或者删除。

15.存储卷(Volume)

        Volume是Pod中能够被多个容器共享的磁盘目录

       容器中的磁盘的生命周期是短暂的,这就带来了一系列的问题,第一,当一个容器损坏之后,kubelet 会重启这个容器,但是文件会丢失-这个容器会是一个全新的状态,第二,当很多容器在同一Pod中运行的时候,很多时候需要数据文件的共享。Kubernete Volume解决了这个问题。

       K8s集群中的存储卷跟Docker的存储卷有些类似,只不过Docker的存储卷作用范围为一个容器,而K8s的存储卷的生命周期和作用范围是一个Pod。每个Pod中声明的存储卷由Pod中的所有容器共享。K8s支持非常多的存储卷类型,特别的,支持多种公有云平台的存储,包括AWS,Google和Azure云;支持多种分布式存储包括GlusterFS和Ceph;也支持较容易使用的主机本地目录hostPath和NFS。K8s还支持使用Persistent Volume Claim即PVC这种逻辑存储,使用这种存储,使得存储的使用者可以忽略后台的实际存储技术(例如AWS,Google或GlusterFS和Ceph),而将有关存储实际技术的配置交给存储管理员通过Persistent Volume来配置。

       Kubernete 支持如下类型的volume:emptyDirhostPath、gcePersistentDisk、awsElasticBlockStore、nfs、iscsi、glusterfs、rbd、gitRepo、secretpersistentVolumeClaim

16.持久存储卷(PersistentVolume,PV)、持久存储卷声明(PersistentVolumeClaim,PVC)和存储类(StorageClass)

       PersistentVolume (PV) 是外部存储系统中的一块存储空间,由管理员创建和维护。与 Volume 一样,PV 具有持久性,生命周期独立于 Pod。

       PersistentVolumeClaim (PVC)是对 PV 的申请 。PVC 通常由普通用户创建和维护。需要为 Pod 分配存储资源时,用户可以创建一个 PVC,指明存储资源的容量大小和访问模式(比如只读)等信息,Kubernetes 会查找并提供满足条件的 PV。

       StorageClass为管理员提供了一种描述他们提供的存储的“类”的方法。 不同的类可能映射到服务质量级别,或备份策略,或者由群集管理员确定的任意策略。 这个概念有时在其他存储系统中称为“配置文件”

       PV和PVC使得K8s集群具备了存储的逻辑抽象能力,使得在配置Pod的逻辑里可以忽略对实际后台存储技术的配置,而把这项配置的工作交给PV的配置者,即集群的管理者。存储的PV和PVC的这种关系,跟计算的Node和Pod的关系是非常类似的;PV和Node是资源的提供者,根据集群的基础设施变化而变化,由K8s集群管理员配置;而PVC和Pod是资源的使用者,根据业务服务的需求变化而变化,有K8s集群的使用者即服务的管理员来配置。

17.命名空间(Namespace)

       Namespace是对一组资源和对象的抽象集合,不同的namespace里的资源是完全隔离的。常用来对系统内部的对象划分为不同的项目组或用户组来达到资源隔离的目的,比如Kubernetes自带的服务一般运行在命名空间kube-system中。也可以将一个物理的cluster逻辑上划分成多个虚拟cluster,每个cluster就是一个namespace。

       Namespace 好比一个资源名字的前缀。它帮助不同的项目、团队或是客户可以共享cluster,例如防止相互独立的团队间出现命名冲突。

       名字空间为K8s集群提供虚拟的隔离作用,K8s集群初始有两个名字空间,分别是默认名字空间default和系统名字空间kube-system,除此以外,管理员可以可以创建新的名字空间满足需要。

18.密钥对象(Secret)

       Secret是用来保存和传递密码、密钥、认证凭证这些敏感信息的对象。使用Secret的好处是可以避免把敏感信息明文写在配置文件里。在K8s集群中配置和使用服务不可避免的要用到各种敏感信息实现登录、认证等功能,例如访问AWS存储的用户名密码。为了避免将类似的敏感信息明文写在所有需要使用的配置文件中,可以将这些信息存入一个Secret对象,而在配置文件中通过Secret对象引用这些敏感信息。这种方式的好处包括:意图明确,避免重复,减少暴漏机会。

19.应用配置管理(ConfigMap)

       ConfigMap用于保存配置数据的键值对,可以用来保存单个属性,也可以用来保存配置文件。ConfigMap跟secret很类似,但它可以更方便地处理不包含敏感信息的字符串。

20.Ingress

       Ingress就是为给外部进入集群的请求提供路由规则的集合。通常情况下,Service 和 Pod 仅支持在集群内部进行服务访问。而 Ingress 可以提供外部服务可访问的 URL / 负载均衡器等。

       Ingress 对象只是配置了一些规则,若要实现集群外部的访问,还需要部署一个 Ingress Controller,它会从 kube-apiserver 监听 Ingress 和 Service 的变更,并根据 Ingress 的规则配置负载均衡来提供访问入口。

21.自动伸缩(Horizontal Pod Autoscaling)

       Horizontal Pod Autoscaling可以根据CPU使用率或应用自定义metrics自动扩展Pod数量(支持replication controller、deployment和replica set)

22.PodPreset

       PodPreset用来给指定标签的Pod注入额外的信息,如环境变量、存储卷等。这样,Pod模板就不需要为每个Pod都显式设置重复的信息。

23.资源配额(Resource Quotas)

       资源配额(Resource Quotas)是用来限制用户资源用量的一种机制,可以用来定义某个命名空间下所有资源的使用限额,包括计算资源的配额、存储资源的配额、对象数量的配额

24.网络策略(Network Policy)

       Network Policy提供了基于策略的网络控制,用于隔离应用并减少攻击面。它使用标签选择器模拟传统的分段网络,并通过策略控制它们之间的流量以及来自外部的流量。

       Kubernetes要求集群中所有pod,无论是节点内还是跨节点,都可以直接通信,或者说所有pod工作在同一跨节点网络,此网络一般是二层虚拟网络,称为pod网络。在安装引导kubernetes时,由选择并安装的network plugin实现。默认情况下,集群中所有pod之间、pod与节点之间可以互通。

       网络主要解决两个问题,一个是连通性,实体之间能够通过网络互通。另一个是隔离性,出于安全、限制网络流量的目的,又要控制实体之间的连通性。Network Policy用来实现隔离性,只有匹配规则的流量才能进入pod,同理只有匹配规则的流量才可以离开pod。

       但请注意,kubernetes支持的用以实现pod网络的network plugin有很多种,并不是全部都支持Network Policy,为kubernetes选择network plugin时需要考虑到这点,是否需要隔离?可用network plugin及是否支持Network Policy请参考https://kubernetes.io/docs/concepts/cluster-administration/addons/#networking-and-network-policy

25.Security Context和PSP

       Security Context的目的是限制不可信容器的行为,保护系统和其他容器不受其影响
       Pod Security Policies(PSP)是集群级的Pod安全策略,自动为集群内的Pod和Volume设置Security Context。使用PSP需要API Server开启extensions/v1beta1/podsecuritypolicy,并且配置PodSecurityPolicyadmission控制器。

26.ThirdPartyResources

       ThirdPartyResources是一种无需改变代码就可以扩展Kubernetes API的机制,可以用来管理自定义对象。(注意:ThirdPartyResources将在v1.7弃用,并在未来版本中删除。建议从v1.7开始,迁移到CustomResourceDefinition)

27.endpoint

       endpoint是k8s集群中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址。service配置selector,endpoint controller才会自动创建对应的endpoint对象。否则,不会生成endpoint对象。

28.Event

       记录k8s集群运行所遇到的各种大事件

29.用户帐户(User Account)和服务帐户(Service Account)

       顾名思义,用户帐户为人提供账户标识,而服务账户为计算机进程和K8s集群中运行的Pod提供账户标识。用户帐户和服务帐户的一个区别是作用范围;用户帐户对应的是人的身份,人的身份与服务的namespace无关,所以用户账户是跨namespace的;而服务帐户对应的是一个运行中程序的身份,与特定namespace是相关的。

30.RBAC访问授权

       K8s在1.3版本中发布了alpha版的基于角色的访问控制(Role-based Access Control,RBAC)的授权模式。相对于基于属性的访问控制(Attribute-based Access Control,ABAC),RBAC主要是引入了角色(Role)和角色绑定(RoleBinding)的抽象概念。在ABAC中,K8s集群中的访问策略只能跟用户直接关联;而在RBAC中,访问策略可以跟某个角色关联,具体的用户在跟一个或多个角色相关联。显然,RBAC像其他新功能一样,每次引入新功能,都会引入新的API对象,从而引入新的概念抽象,而这一新的概念抽象一定会使集群服务管理和使用更容易扩展和重用。

31.集群联邦(Federation)

       K8s在1.3版本里发布了beta版的Federation功能。在云计算环境中,服务的作用距离范围从近到远一般可以有:同主机(Host,Node)、跨主机同可用区(Available Zone)、跨可用区同地区(Region)、跨地区同服务商(Cloud Service Provider)、跨云平台。K8s的设计定位是单一集群在同一个地域内,因为同一个地区的网络性能才能满足K8s的调度和计算存储连接要求。而联合集群服务就是为提供跨Region跨服务商K8s集群服务而设计的。

       每个K8s Federation有自己的分布式存储、API Server和Controller Manager。用户可以通过Federation的API Server注册该Federation的成员K8s Cluster。当用户通过Federation的API Server创建、更改API对象时,Federation API Server会在自己所有注册的子K8s Cluster都创建一份对应的API对象。在提供业务请求服务时,K8s Federation会先在自己的各个子Cluster之间做负载均衡,而对于发送到某个具体K8s Cluster的业务请求,会依照这个K8s Cluster独立提供服务时一样的调度模式去做K8s Cluster内部的负载均衡。而Cluster之间的负载均衡是通过域名服务的负载均衡来实现的。

       所有的设计都尽量不影响K8s Cluster现有的工作机制,这样对于每个子K8s集群来说,并不需要更外层的有一个K8s Federation,也就是意味着所有现有的K8s代码和机制不需要因为Federation功能有任何变化。

本文仅是个人学习时的整理收藏,以便回顾所用,内容均来源其它处。
[参考文档]http://docs.kubernetes.org.cn/227.html.

发布了9 篇原创文章 · 获赞 0 · 访问量 908

猜你喜欢

转载自blog.csdn.net/qq_42987484/article/details/103336637
今日推荐