Netty零拷贝原理探究

Netty的“零拷贝”主要体现在如下几个方面:

1) 即所谓的 Zero-copy就是在操作数据时, 不需要将数据 buffer 从一个内存区域拷贝到另一个内存区域. 因为少了一次内存的拷贝, 因此 CPU 的效率就得到的提升.Netty的接收和发送ByteBuffer采用DIRECT BUFFERS,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。如果使用传统的堆内存(HEAP BUFFERS)进行Socket读写,JVM会将堆内存Buffer拷贝一份到直接内存中,然后才写入Socket中。相比于堆外直接内存,消息在发送过程中多了一次缓冲区的内存拷贝。

先看Netty 接收Buffer的创建:

每循环读取一次消息,就通过ByteBufAllocator的ioBuffer方法获取ByteBuf对象。 ByteBufAllocator 通过ioBuffer分配堆外内存。当进行Socket IO读写的时候,为了避免从堆内存拷贝一份副本到直接内存,Netty的ByteBuf分配器直接创建非堆内存避免缓冲区的二次拷贝,通过“零拷贝”来提升读写性能。

 

2) Netty提供了组合Buffer对象,可以聚合多个ByteBuffer对象,用户可以像操作一个Buffer那样方便的对组合Buffer进行操作,避免了传统通过内存拷贝的方式将几个小Buffer合并成一个大的Buffer。

假设我们有一份协议数据, 它由头部和消息体组成, 而头部和消息体是分别存放在两个 ByteBuf 中的, 即:ByteBuf header = ...

ByteBuf body = ...

我们在代码处理中, 通常希望将 header 和 body 合并为一个 ByteBuf, 方便处理, 那么通常的做法是:ByteBuf allBuf = Unpooled.buffer(header.readableBytes() + body.readableBytes());

allBuf.writeBytes(header);

allBuf.writeBytes(body);

可以看到, 我们将 header 和 body 都拷贝到了新的 allBuf 中了, 这无形中增加了两次额外的数据拷贝操作了.那么有没有更加高效优雅的方式实现相同的目的呢? 我们来看一下 CompositeByteBuf 是如何实现这样的需求的吧.

ByteBuf header = ...

ByteBuf body = ...

 

CompositeByteBuf compositeByteBuf = Unpooled.compositeBuffer();

compositeByteBuf.addComponents(true, header, body);

上面代码中, 我们定义了一个 CompositeByteBuf 对象, 然后调用

public CompositeByteBuf addComponents(boolean increaseWriterIndex, ByteBuf... buffers) {

...

}

方法将 header 与 body 合并为一个逻辑上的 ByteBuf, 即:

不过需要注意的是, 虽然看起来 CompositeByteBuf 是由两个 ByteBuf 组合而成的, 不过在 CompositeByteBuf 内部, 这两个 ByteBuf 都是单独存在的, CompositeByteBuf 只是逻辑上是一个整体.

上面 CompositeByteBuf 代码还以一个地方值得注意的是, 我们调用 addComponents(boolean increaseWriterIndex, ByteBuf... buffers) 来添加两个 ByteBuf, 其中第一个参数是 true, 表示当添加新的 ByteBuf 时, 自动递增 CompositeByteBuf 的 writeIndex.
如果我们调用的是

compositeByteBuf.addComponents(header, body);

那么其实 compositeByteBuf 的 writeIndex 仍然是0, 因此此时我们就不可能从 compositeByteBuf 中读取到数据, 这一点希望大家要特别注意.

除了上面直接使用 CompositeByteBuf 类外, 我们还可以使用 Unpooled.wrappedBuffer 方法, 它底层封装了 CompositeByteBuf 操作, 因此使用起来更加方便:

ByteBuf header = ...

ByteBuf body = ...

ByteBuf allByteBuf = Unpooled.wrappedBuffer(header, body);

 

3) 通过 wrap 操作实现零拷贝

例如我们有一个 byte 数组, 我们希望将它转换为一个 ByteBuf 对象, 以便于后续的操作, 那么传统的做法是将此 byte 数组拷贝到 ByteBuf 中, 即:

byte[] bytes = ...

ByteBuf byteBuf = Unpooled.buffer();

byteBuf.writeBytes(bytes);

显然这样的方式也是有一个额外的拷贝操作的, 我们可以使用 Unpooled 的相关方法, 包装这个 byte 数组, 生成一个新的 ByteBuf 实例, 而不需要进行拷贝操作. 上面的代码可以改为:

byte[] bytes = ...

ByteBuf byteBuf = Unpooled.wrappedBuffer(bytes);

可以看到, 我们通过 Unpooled.wrappedBuffer 方法来将 bytes 包装成为一个 UnpooledHeapByteBuf 对象, 而在包装的过程中, 是不会有拷贝操作的. 即最后我们生成的生成的 ByteBuf 对象是和 bytes 数组共用了同一个存储空间, 对 bytes 的修改也会反映到 ByteBuf 对象中.

 

4)通过 slice 操作实现零拷贝

slice 操作和 wrap 操作刚好相反, Unpooled.wrappedBuffer 可以将多个 ByteBuf 合并为一个, 而 slice 操作可以将一个 ByteBuf 切片为多个共享一个存储区域的 ByteBuf 对象.
ByteBuf 提供了两个 slice 操作方法:

public ByteBuf slice();

public ByteBuf slice(int index, int length);

不带参数的 slice 方法等同于 buf.slice(buf.readerIndex(), buf.readableBytes()) 调用, 即返回 buf 中可读部分的切片. 而 slice(int index, int length) 方法相对就比较灵活了, 我们可以设置不同的参数来获取到 buf 的不同区域的切片.

下面的例子展示了 ByteBuf.slice 方法的简单用法:

ByteBuf byteBuf = ...

ByteBuf header = byteBuf.slice(05);

ByteBuf body = byteBuf.slice(510);

用 slice 方法产生 header 和 body 的过程是没有拷贝操作的, header 和 body 对象在内部其实是共享了 byteBuf 存储空间的不同部分而已. 即:

 

5)通过 FileRegion 实现零拷贝

Netty 中使用 FileRegion 实现文件传输的零拷贝, 不过在底层 FileRegion 是依赖于 Java NIO FileChannel.transfer 的零拷贝功能.

首先我们从最基础的 Java IO 开始吧. 假设我们希望实现一个文件拷贝的功能, 那么使用传统的方式, 我们有如下实现:

public static void copyFile(String srcFile, String destFile) throws Exception {

    byte[] temp = new byte[1024];

    FileInputStream in = new FileInputStream(srcFile);

    FileOutputStream out = new FileOutputStream(destFile);

    int length;

    while ((length = in.read(temp)) != -1) {

        out.write(temp, 0, length);

    }

    in.close();

    out.close();

}

上面是一个典型的读写二进制文件的代码实现了. 不用我说, 大家肯定都知道, 上面的代码中不断中源文件中读取定长数据到 temp 数组中, 然后再将 temp 中的内容写入目的文件, 这样的拷贝操作对于小文件倒是没有太大的影响, 但是如果我们需要拷贝大文件时, 频繁的内存拷贝操作就消耗大量的系统资源了.
下面我们来看一下使用 Java NIO 的 FileChannel 是如何实现零拷贝的:

public static void copyFileWithFileChannel(String srcFileName, String destFileName) throws Exception {

    RandomAccessFile srcFile = new RandomAccessFile(srcFileName, "r");

    FileChannel srcFileChannel = srcFile.getChannel();

    RandomAccessFile destFile = new RandomAccessFile(destFileName, "rw");

    FileChannel destFileChannel = destFile.getChannel();

 

    long position = 0;

    long count = srcFileChannel.size();

    srcFileChannel.transferTo(position, count, destFileChannel);

}

可以看到, 使用了 FileChannel 后, 我们就可以直接将源文件的内容直接拷贝(transferTo) 到目的文件中, 而不需要额外借助一个临时 buffer, 避免了不必要的内存操作.

有了上面的一些理论知识, 我们来看一下在 Netty 中是怎么使用 FileRegion 来实现零拷贝传输一个文件的:

@Override

public void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception {

    RandomAccessFile raf = null;

    long length = -1;

    try {

        // 1. 通过 RandomAccessFile 打开一个文件.

        raf = new RandomAccessFile(msg, "r");

        length = raf.length();

    } catch (Exception e) {

        ctx.writeAndFlush("ERR: " + e.getClass().getSimpleName() + ": " + e.getMessage() + '\n');

        return;

    } finally {

        if (length < 0 && raf != null) {

            raf.close();

        }

    }

    ctx.write("OK: " + raf.length() + '\n');

    if (ctx.pipeline().get(SslHandler.class) == null) {

        // SSL not enabled - can use zero-copy file transfer.

        // 2. 调用 raf.getChannel() 获取一个 FileChannel.

        // 3. 将 FileChannel 封装成一个 DefaultFileRegion

        ctx.write(new DefaultFileRegion(raf.getChannel(), 0, length));

    } else {

        // SSL enabled - cannot use zero-copy file transfer.

        ctx.write(new ChunkedFile(raf));

    }

    ctx.writeAndFlush("\n");

}

上面的代码是 Netty 的一个例子, 其源码在 netty/example/src/main/java/io/netty/example/file/FileServerHandler.java
可以看到, 第一步是通过 RandomAccessFile 打开一个文件, 然后 Netty 使用了 DefaultFileRegion 来封装一个 FileChannel 即:

new DefaultFileRegion(raf.getChannel(), 0, length)

当有了 FileRegion 后, 我们就可以直接通过它将文件的内容直接写入 Channel 中, 而不需要像传统的做法: 拷贝文件内容到临时 buffer, 然后再将 buffer 写入 Channel. 通过这样的零拷贝操作, 无疑对传输大文件很有帮助.

猜你喜欢

转载自blog.csdn.net/sysong88/article/details/80217504