[NOI Online #2 入门组] 魔法(矩阵加速) | 错题本

文章目录

题目

[NOI Online #2 入门组] 魔法

分析

d p [ i ] [ j ] [ k ] dp[i][j][k] 表示 i i j j k k 次魔法的最小代价, f [ i ] [ j ] f[i][j] 表示 i i j j 用一次魔法的最小代价:
d p [ i ] [ j ] [ k ] = min { d p [ i ] [ u ] [ k 1 ] + f [ u ] [ j ] , f [ i ] [ u ] + d p [ u ] [ j ] [ k 1 ] } dp[i][j][k] = \min \{dp[i][u][k - 1] + f[u][j], f[i][u] + dp[u][j][k - 1]\} 枚举的中转节点 u u 恰似 Floyd 算法,于是套路矩阵加速即可, g [ i ] [ j ] g[i][j] 表示不用魔法 i i j j 最小代价,则答案为 g × f k g \times f^k 其中 × \times 号不是常规矩阵乘法,而与 DP 式相似,由于 min \min 有对 + + 的分配率( a + min { b , c } = min { a + b , a + c } a + \min\{b, c\} = \min\{a + b, a + c\} ),所以这个矩阵运算有结合律,所以可以快速幂。

错因

  • DP 式列错,想的是转移的最后一条边用魔法,死活快速幂做不出来,实际上是最后一段的某一条边用魔法;
  • 分层图骗分还没有连 u u u \to u' 代价为 0 0 的边,70 pts \to 50 pts。

代码

#include <algorithm>
#include <cstring>
#include <cstdio>
#include <set>
#include <vector>

typedef long long LL;

const int MAXN = 100;
const int MAXM = 2500;
const int MAXK = 1000;
const LL INF = 1ll << 60;

int N, M, K;
int U[MAXM + 5], V[MAXM + 5], W[MAXM + 5];
LL G[MAXN + 5][MAXN + 5], One[MAXN + 5][MAXN + 5], C[MAXN + 5][MAXN + 5];

LL Mul(LL A[MAXN + 5][MAXN + 5], LL B[MAXN + 5][MAXN + 5]) {
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++) {
            C[i][j] = INF;
            for (int k = 1; k <= N; k++)
                C[i][j] = std::min(C[i][j], A[i][k] + B[k][j]);
        }
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            A[i][j] = C[i][j];
}

int main() {
    scanf("%d%d%d", &N, &M, &K);
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            if (i != j)
                G[i][j] = One[i][j] = INF;
    for (int i = 1; i <= M; i++) {
        int u, v, w; scanf("%d%d%d", &u, &v, &w);
        G[u][v] = w, U[i] = u, V[i] = v, W[i] = w;
    }
    for (int k = 1; k <= N; k++)
        for (int i = 1; i <= N; i++)
            for (int j = 1; j <= N; j++)
                G[i][j] = std::min(G[i][j], G[i][k] + G[k][j]);
    if (!K)
        return printf("%lld", G[1][N]), 0;
    for (int k = 1; k <= M; k++)
        for (int i = 1; i <= N; i++)
            for (int j = 1; j <= N; j++)
                One[i][j] = std::min(One[i][j], G[i][U[k]] + G[V[k]][j] - W[k]);
    while (K) {
        if (K & 1)
            Mul(G, One);
        Mul(One, One);
        K >>= 1;
    }
    printf("%lld", G[1][N]);
    return 0;
}

猜你喜欢

转载自blog.csdn.net/C20190102/article/details/107126038