C++类欧几里得算法

文章目录


(本文用 绿 \color{green}绿色 标注一切函数,用 \color{purple}紫色 标注部分可以 O ( 1 ) O(1) 计算的常量式,便于观察)(不知道为什么加了颜色过后括号不能自动变大了,将就看吧= =)

概述

类欧几里得算法用于求形如 f ( a , b , c , n ) = i = 0 n a i + b c \color{green}{f(a, b, c, n)} \color{o} = \sum \limits_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor 的式子。这个式子有个几何意义,表示求下图中阴影部分中的整点个数(直线为 y = a x + b y=ax+b ):
几何意义

算法

a = a % c , b = b % c a' = a \% c, b' = b \% c ,由定义式得 f ( a , b , c , n ) = i = 0 n ( a i + b c + a c i + b c ) = f ( a , b , c , n ) + a c i = 0 n i + ( n + 1 ) b c \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i + \left\lfloor \frac{b}{c} \right\rfloor \right) \\ &= \color{green} f(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor \sum_{i = 0}^{n} i \color{o} + \color{purple} (n + 1) \left\lfloor \frac{b}{c} \right\rfloor \end{aligned} 于是只需要处理 a , b < c a, b < c 的情况。

m = a n + b c m = \left\lfloor \frac{a n + b}{c} \right\rfloor ,则 f ( a , b , c , n ) = i = 0 n j = 0 m [ j a i + b c ] = i = 0 n j = 0 m 1 [ j < a i + b c ] = j = 0 m 1 i = 0 n [ j < a i + b c ] \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{i = 0}^{n} \sum_{j = 0}^{m} \left[ j \leq \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \\ &= \sum_{i = 0}^{n} \sum_{j = 0}^{m - 1} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \\ &= \sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \end{aligned}

现在要想办法把里面变成 i i 为主元。
如下图所示,可以看出 0 j < 5 0 \leq j < 5 ,结合图示可以得到 j < a i + b c ( j + 1 ) c a i + b j < \left\lfloor \frac{a i + b}{c} \right\rfloor \Leftrightarrow (j + 1) c \leq a i + b 图示1
( j + 1 ) c < a i + b + 1 (j + 1) c < a i + b + 1 ,即 i > c j b + c 1 a i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor 于是可以继续化简了 f ( a , b , c , n ) = j = 0 m 1 i = 0 n [ i > c j b + c 1 a ] = j = 0 m 1 ( n c j b + c 1 a ) = m n j = 0 m 1 c j b + c 1 a = m n f ( c , c b 1 , a , m 1 ) \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left[ i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \\ &= \sum_{j = 0}^{m - 1} \left( n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor\right) \\ &= \color{purple}{m n} \color{o} - \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \\ &= \color{purple}{m n} \color{o} - \color{green}{{}f(c, c - b - 1, a, m - 1)} \end{aligned}
仔细康康这个递推式,发现是由 f ( a , b , c , n ) f(a, b, c, n) 变成了 f ( c , c b % c 1 , a % c , m 1 ) f(c, c - b \% c - 1, a \% c, m - 1) a , c a, c 两个参数的变化跟欧几里得算法一模一样,所以它的复杂度跟欧几里得求最大公约数的算法一样,也因此称它为类欧。

版题

洛谷P5170 【模板】类欧几里得算法

它还让你求 g ( a , b , c , n ) = i = 0 n a i + b c 2 \color{green} g(a, b, c, n) \color{o} = \sum \limits_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor ^ 2 ,以及 h ( a , b , c , n ) = i = 0 n ( i a i + b c ) \color{green} h(a, b, c, n) \color{o} = \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a i + b}{c} \right\rfloor \right) ,直接刚,令 a = a % c , b = b % c a' = a \%c, b' = b \% c g ( a , b , c , n ) = i = 0 n ( a i + b c + a c i + b c ) 2 = g ( a , b , c , n ) + a c 2 i = 0 n i 2 + i = 0 n b c 2 + 2 i = 0 n ( a i + b c a c i ) + 2 i = 0 n ( a i + b c b c ) + 2 i = 0 n ( i a c b c ) = g ( a , b , c , n ) + a c 2 i = 0 n i 2 + i = 0 n b c 2 + 2 a c h ( a , b , c , n ) + 2 b c f ( a , b , c , n ) + 2 i = 0 n ( i a c b c ) = g ( a , b , c , n ) + 2 a c h ( a , b , c , n ) + 2 b c f ( a , b , c , n ) + i = 0 n b c 2 + a c 2 i = 0 n i 2 + 2 i = 0 n ( i a c b c ) h ( a , b , c , n ) = i = 0 n ( i a i + b c + a c i 2 + b c i ) = h ( a , b , c , n ) + a c i = 0 n i 2 + b c i = 0 n i \begin{aligned} \color{green} g(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i + \left\lfloor \frac{b}{c} \right\rfloor\right)^2 \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + 2 \sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor \left\lfloor \frac{a}{c} \right\rfloor i \right) \\ &+ 2 \sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor \left\lfloor \frac{b}{c} \right\rfloor \right) + \color{purple}2 \sum \limits_{i = 0}^{n} \left( i\left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + \color{purple} 2 \left\lfloor \frac{a}{c} \right\rfloor \color{green} h(a', b', c, n) \\ &+ \color{purple} 2 \left\lfloor \frac{b}{c} \right\rfloor \color{green} f(a', b', c, n) \color{o} + \color{purple} 2 \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} 2 \left\lfloor \frac{a}{c} \right\rfloor \color{green} h(a', b', c, n) + \color{purple} 2 \left\lfloor \frac{b}{c} \right\rfloor \color{green} f(a', b', c, n) \\ &\color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} 2 \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ \color{green} h(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i ^ 2 + \left\lfloor \frac{b}{c} \right\rfloor i \right) \\ = &\color{green} h(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \left\lfloor \frac{b}{c} \right\rfloor \sum \limits_{i = 0}^{n} i \end{aligned} 接下来考虑 a , b < c a, b < c 的情况,这里有一个显然而神奇的变形: x 2 = 2 x ( x + 1 ) 2 x = 2 i = 0 n i x x^2 = 2 \cdot \frac{x(x + 1)}{2}-x = 2\sum_{i = 0}^{n} i - x 于是,令 m = a n + b c m = \left\lfloor \frac{a n + b}{c} \right\rfloor g ( a , b , c , n ) = i = 0 n a i + b c 2 = i = 0 n ( 2 j = 0 a i + b c j a i + b c ) = 2 i = 0 n j = 0 a i + b c j f ( a , b , c , n ) = 2 j = 0 m 1 ( ( j + 1 ) i = 0 n [ j < a i + b c ] ) f ( a , b , c , n ) = 2 j = 0 m 1 ( ( j + 1 ) i = 0 n [ i > c j b + c 1 a ] ) f ( a , b , c , n ) = 2 j = 0 m 1 ( ( j + 1 ) ( n c j b + c 1 a ) ) f ( a , b , c , n ) = 2 n j = 0 m 1 ( j + 1 ) 2 j = 0 m 1 ( ( j + 1 ) c j b + c 1 a ) f ( a , b , c , n ) = 2 n j = 0 m 1 ( j + 1 ) 2 ( h ( c , c b 1 , a , m 1 ) + f ( c , c b 1 , a , m 1 ) ) f ( a , b , c , n ) h ( a , b , c , n ) = i = 0 n ( i a i + b c ) = j = 0 m 1 i = 0 n ( i [ j < a i + b c ] ) = j = 0 m 1 i = 0 n ( i [ i < c j b + c 1 a ] ) = j = 0 m 1 i = c j b + c 1 a + 1 n i = j = 0 m 1 ( 1 2 ( n + c j b + c 1 a + 1 ) ( n c j b + c 1 a ) ) = 1 2 j = 0 m 1 ( n ( n + 1 ) ) + 1 2 n j = 0 m 1 c j b + c 1 a 1 2 j = 0 m 1 c j b + c 1 a 2 1 2 ( n + 1 ) j = 0 m 1 c j b + c 1 a = 1 2 j = 0 m 1 ( n ( n + 1 ) ) + 1 2 g ( c , c b 1 , a , m 1 ) 1 2 f ( c , c b 1 , a , m 1 ) \begin{aligned} \color{green}{g(a, b, c, n)} \color{black} = &\sum_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor ^ 2 \\ = &\sum_{i = 0}^{n} \left( 2 \sum_{j = 0}^{\left\lfloor \frac{a i + b}{c} \right\rfloor} j - \left\lfloor \frac{a i + b}{c} \right\rfloor\right) \\ = &2\sum_{i = 0}^{n} \sum_{j = 0}^{\left\lfloor \frac{a i + b}{c} \right\rfloor} j - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)\sum_{i = 0}^{n} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \right) - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)\sum_{i = 0}^{n} \left[ i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \right) - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)(n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor) \right) - \color{green} f(a, b, c, n) \\ = &\color{purple} 2 n \sum_{j = 0}^{m - 1} (j + 1) \color{o} - 2\sum_{j = 0}^{m - 1} \left( (j + 1)\left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right) - \color{green} f(a, b, c, n) \\ = &\color{purple} 2 n \sum_{j = 0}^{m - 1} (j + 1) \color{o} - 2 (\color{green} h(c, c - b - 1, a, m - 1) \color{o} + \color{green} f(c, c - b - 1, a, m - 1) \color{o} ) - \color{green} f(a, b, c, n) \\ \color{green} h(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a i + b}{c} \right\rfloor \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left( i \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left( i \left[ i < \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor + 1}^{n} i \\ = & \sum_{j = 0}^{m - 1} \left( \frac{1}{2} \left(n + \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor + 1 \right) \left(n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right) \right) \\ = &\color{purple} \frac{1}{2} \sum_{j = 0}^{m - 1} (n (n + 1)) \color{o} + \frac{1}{2} n \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor - \frac{1}{2} \sum_{j = 0}^{m - 1}\left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor ^ 2 \\ &- \frac{1}{2} (n + 1) \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \\ = &\color{purple} \frac{1}{2} \sum_{j = 0}^{m - 1} (n (n + 1)) \color{o} + \color{purple}\frac{1}{2} \color{green} g(c, c - b - 1, a, m - 1) \color{o} - \color{purple}\frac{1}{2} \color{green} f(c, c - b - 1, a, m - 1) \end{aligned}

代码
用结构体存,同步计算。
每个字符都要看清楚!

#include <cstdio>

typedef long long LL;

const LL MOD = 998244353;
const LL Inv2 = 499122177, Inv6 = 166374059;

struct Data {
	LL f, g, h;
	Data() { f = g = h = 0; }
	Data(LL _f, LL _g, LL _h) {
		f = _f, g = _g, h = _h;
	}
};

Data Euclid(LL a, LL b, LL c, LL n) {
	LL a1 = a / c, b1 = b / c, m = (a * n + b) / c;
	if (a == 0)
		return Data(b1 * (n + 1) % MOD,
					b1 * b1 % MOD * (n + 1) % MOD,
					b1 * n % MOD * (n + 1) % MOD * Inv2 % MOD);
	if (a >= c || b >= c) {
		Data T = Euclid(a % c, b % c, c, n);
		return Data((T.f + a1 * n % MOD * (n + 1) % MOD * Inv2 % MOD + (n + 1) * b1 % MOD) % MOD,
					(T.g + 2 * a1 % MOD * T.h % MOD + 2 * b1 % MOD * T.f % MOD + (n + 1) * b1 % MOD * b1 % MOD + a1 * b1 % MOD * n % MOD * (n + 1) % MOD + a1 * a1 % MOD * n % MOD * (n + 1) % MOD * (2 * n + 1) % MOD * Inv6 % MOD) % MOD,
					(T.h + a1 * n % MOD * (n + 1) % MOD * (2 * n + 1) % MOD * Inv6 % MOD + b1 * n % MOD * (n + 1) % MOD * Inv2 % MOD) % MOD);
	}
	Data T = Euclid(c, c - b - 1, a, m - 1);
	Data R(((m * n % MOD - T.f) % MOD + MOD) % MOD, 0, 0);
	return Data(R.f,
				((n * m % MOD * (m + 1) % MOD - 2 * T.h % MOD - 2 * T.f % MOD - R.f) % MOD + MOD) % MOD,
				((m * n % MOD * (n + 1) % MOD - T.g - T.f) % MOD + MOD) % MOD * Inv2 % MOD);
}

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		int N, A, B, C;
		scanf("%d%d%d%d", &N, &A, &B, &C);
		Data Ans = Euclid(A, B, C, N);
		printf("%lld %lld %lld\n", Ans.f, Ans.g, Ans.h);
	}
}

强推OI WiKi的类欧几里得算法

猜你喜欢

转载自blog.csdn.net/C20190102/article/details/104382256