数学归纳法证明差分公式

n n n阶差分
Δ n f ( x ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( x + i ) \Delta^nf(x)=\sum_{i=0}^{n}(-1)^{n-i}{n\choose i}f(x+i) Δnf(x)=i=0n(1)ni(in)f(x+i)

证明:
首先当 n = 1 n=1 n=1时成立
i ≤ n − 1 i\le n-1 in1 Δ i f ( x ) \Delta^if(x) Δif(x)都成立,则
Δ n f ( x ) = Δ ( Δ n − 1 f ( x ) ) = Δ n − 1 f ( x + 1 ) − Δ n − 1 f ( x ) = ∑ i = 0 n − 1 ( − 1 ) n − 1 − i ( n − 1 i ) f ( x + 1 + i ) − ∑ i = 0 n − 1 ( − 1 ) n − 1 − i ( n − 1 i ) f ( x + i ) = ∑ i = 1 n ( − 1 ) n − i ( n − 1 i − 1 ) f ( x + i ) − ∑ i = 0 n − 1 ( − 1 ) n − 1 − i ( n − 1 i ) f ( x + i ) = f ( x + n ) − ( − 1 ) n − 1 f ( x ) + ∑ i = 1 n − 1 ( − 1 ) n − i f ( x + i ) [ ( n − 1 i − 1 ) + ( n − 1 i ) ] = f ( x + n ) + ( − 1 ) n f ( x ) + ∑ i = 1 n − 1 ( − 1 ) n − i ( n i ) f ( x + i ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( x + i ) \begin{aligned} \Delta^nf(x)&=\Delta(\Delta^{n-1}f(x))\\ &=\Delta^{n-1}f(x+1)-\Delta^{n-1}f(x)\\ &=\sum_{i=0}^{n-1}(-1)^{n-1-i}{n-1\choose i}f(x+1+i)-\sum_{i=0}^{n-1}(-1)^{n-1-i}{n-1\choose i}f(x+i)\\ &=\sum_{i=1}^{n}(-1)^{n-i}{n-1\choose i-1}f(x+i)-\sum_{i=0}^{n-1}(-1)^{n-1-i}{n-1\choose i}f(x+i)\\ &=f(x+n)-(-1)^{n-1}f(x)+\sum_{i=1}^{n-1}(-1)^{n-i}f(x+i)\Big[{n-1\choose i-1}+{n-1\choose i}\Big]\\ &=f(x+n)+(-1)^nf(x)+\sum_{i=1}^{n-1}(-1)^{n-i}{n\choose i}f(x+i)\\ &=\sum_{i=0}^{n}(-1)^{n-i}{n\choose i}f(x+i)\\ \end{aligned} Δnf(x)=Δ(Δn1f(x))=Δn1f(x+1)Δn1f(x)=i=0n1(1)n1i(in1)f(x+1+i)i=0n1(1)n1i(in1)f(x+i)=i=1n(1)ni(i1n1)f(x+i)i=0n1(1)n1i(in1)f(x+i)=f(x+n)(1)n1f(x)+i=1n1(1)nif(x+i)[(i1n1)+(in1)]=f(x+n)+(1)nf(x)+i=1n1(1)ni(in)f(x+i)=i=0n(1)ni(in)f(x+i)

猜你喜欢

转载自blog.csdn.net/qq_43520313/article/details/109167030