P1807 最长路 【spa||拓扑排序】
题意: 求1-n的最长路,不能到达,输出-1;
误解: 首先想到的是Dijkstra改松弛条件(WA),变负权值跑最短路(WA),但是发现一个事,首先如果我们改松弛条件,按Dijkstra算法,找第一个距离源点S最远的点时,找到的是与S直接相连的点A,这个距离在以后就不会改变了(因为已经标记为访问过状态)。但A与S的最远距离一般不是直连。而且Dijkstra不能跑带有负边权的路,所以你变负边权求肯定是错的。
正解:上面提到了改负权值跑最短路,这个思想是对的,但是我们可以用Bellman-Ford或者Spa求,那么可不可以改spa松弛条件呢?答案是肯定的,spa类似于bfs,每条边都会跑一遍,肯定会使dis数组更新为最大。还有一种DP的思想,如果不是DAG,我们可以跑一个树形DP,而DAG要用一个拓扑排序更新dis数组,初始化,将到到达节点1的距离设为最大值(确保是从节点1到达节点N)。
SPA:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+505;
const int INF=1e8;
typedef long long ll;
struct EDGE
{
int to,next;
int w;
} edge[50005];
int vis[maxn],n,m,pre[maxn],head[maxn],cnt=0;
int dis[maxn];
void add(int u,int v,int w)
{
edge[++cnt].next=head[u];
edge[cnt].to=v;
edge[cnt].w=w;
head[u]=cnt;
}
void init()
{
memset(head,-1,sizeof head);
cnt=0;
}
void spa(int st)
{
queue<int>q;
for(int i=1; i<=n; i++)
dis[i]=-INF,vis[i]=0;
q.push(st);
dis[st]=0;
vis[st]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].to;
int w=edge[i].w;
if(dis[v]<dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
spa(1);
if(dis[n]==-INF)
printf("-1\n");
else
printf("%d\n",dis[n]);
}
TopSort:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e3+505;
const int INF=1e8;
const int maxm=5e4+5;
struct node
{
int w,to;
int next;
} edge[maxm];
int indeg[maxn],head[maxn],dis[maxn],vis[maxn],cnt=0,n,m;
void add(int u,int v,int w)
{
edge[++cnt].next=head[u];
edge[cnt].to=v;
edge[cnt].w=w;
head[u]=cnt;
}
void topsort()
{
dis[n]=0;
queue<int>q;
for(int i=1; i<=n; i++)
if(indeg[i]==0)
q.push(i);
dis[1]=INF;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].to;
int w=edge[i].w;
indeg[v]--;
if(dis[v]<dis[u]+w)
{
dis[v]=dis[u]+w;
}
if(indeg[v]==0)
q.push(v);
}
}
}
int main()
{
memset(head,-1,sizeof head);
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
indeg[v]++;
}
topsort();
printf("%d\n",dis[n]==0?-1:dis[n]-INF);
}