背景
- 已经搭建好STM32F107VCT6的最小系统,本篇开始调试freemodbus主机,RS485 RTU模式。
- 算是笔记吧,只要STM32系列一个平台上调通,整个系列调试起来,都不会困难
- freemodbus协议比较简单易用,用做串口通信也是非常的实用。
移植过程
- 首先已经搭建好RT-Thread最小系统。
- 确认硬件原理图,引脚配置与接线。
硬件接线
- RS485 UART4,注意设置RS485 方向控制引脚。
- Shell CMD串口 UART5。
- 可以首先使用STM32CubeMX,把UART4 UART5引脚初始化及时钟初始化配置好。
- 配置完引脚,会更新:stm32f1xx_hal_msp.c。
- UART4、 UART5的引脚初始化如下:
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(huart->Instance==UART4)
{
/* USER CODE BEGIN UART4_MspInit 0 */
/* USER CODE END UART4_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_UART4_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/**UART4 GPIO Configuration
PC10 ------> UART4_TX
PC11 ------> UART4_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* USER CODE BEGIN UART4_MspInit 1 */
/* USER CODE END UART4_MspInit 1 */
}
else if(huart->Instance==UART5)
{
/* USER CODE BEGIN UART5_MspInit 0 */
/* USER CODE END UART5_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_UART5_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**UART5 GPIO Configuration
PC12 ------> UART5_TX
PD2 ------> UART5_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USER CODE BEGIN UART5_MspInit 1 */
/* USER CODE END UART5_MspInit 1 */
}
else if(huart->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspInit 0 */
/* USER CODE END USART2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**USART2 GPIO Configuration
PD5 ------> USART2_TX
PD6 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
__HAL_AFIO_REMAP_USART2_ENABLE();
/* USART2 interrupt Init */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspInit 1 */
/* USER CODE END USART2_MspInit 1 */
}
}
/**
* @brief UART MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
{
if(huart->Instance==UART4)
{
/* USER CODE BEGIN UART4_MspDeInit 0 */
/* USER CODE END UART4_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_UART4_CLK_DISABLE();
/**UART4 GPIO Configuration
PC10 ------> UART4_TX
PC11 ------> UART4_RX
*/
HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10|GPIO_PIN_11);
/* USER CODE BEGIN UART4_MspDeInit 1 */
/* USER CODE END UART4_MspDeInit 1 */
}
else if(huart->Instance==UART5)
{
/* USER CODE BEGIN UART5_MspDeInit 0 */
/* USER CODE END UART5_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_UART5_CLK_DISABLE();
/**UART5 GPIO Configuration
PC12 ------> UART5_TX
PD2 ------> UART5_RX
*/
HAL_GPIO_DeInit(GPIOC, GPIO_PIN_12);
HAL_GPIO_DeInit(GPIOD, GPIO_PIN_2);
/* USER CODE BEGIN UART5_MspDeInit 1 */
/* USER CODE END UART5_MspDeInit 1 */
}
else if(huart->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspDeInit 0 */
/* USER CODE END USART2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART2_CLK_DISABLE();
/**USART2 GPIO Configuration
PD5 ------> USART2_TX
PD6 ------> USART2_RX
*/
HAL_GPIO_DeInit(GPIOD, GPIO_PIN_5|GPIO_PIN_6);
/* USART2 interrupt DeInit */
HAL_NVIC_DisableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspDeInit 1 */
/* USER CODE END USART2_MspDeInit 1 */
}
}
freemodbus软件包
配置好硬件引脚,在通过RT-Thread ENV工具,menuconfig,把freemodbus 软件包拉到工程里
需要pkgs --update,用于拉取软件包
注意,此时,UART4 UART5,还要使能,需要配置board目录下的:Kconfig
menu "On-chip Peripheral Drivers"
config BSP_USING_GPIO
bool "Enable GPIO"
select RT_USING_PIN
default y
menuconfig BSP_USING_UART
bool "Enable UART"
default y
select RT_USING_SERIAL
if BSP_USING_UART
config BSP_USING_UART2
bool "Enable UART2"
default y
config BSP_UART2_RX_USING_DMA
bool "Enable UART2 RX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA
default n
config BSP_USING_UART3
bool "Enable UART3"
default y
config BSP_USING_UART4
bool "Enable UART4"
default y
config BSP_USING_UART5
bool "Enable UART5"
default y
endif
source "../libraries/HAL_Drivers/Kconfig"
endmenu
调试
- 编译,下载,接线,开始调试
- 使用USB转RS485进行调试,
- 使用Modbus Slave工具,模拟RS485 Modbus从机
freemodbus的主机例程,我简单的修改了下,增加一个数据的写操作。
#define MB_SEND_REG_START 2
#define MB_SEND_REG_NUM 3
#define MB_POLL_CYCLE_MS 500
static void send_thread_entry(void *parameter)
{
eMBMasterReqErrCode error_code = MB_MRE_NO_ERR;
rt_uint16_t error_count = 0;
USHORT data[3] = {0};
USHORT num = 0;
while (1)
{
/* Test Modbus Master */
data[0] = (USHORT)(rt_tick_get() / 10);
data[1] = (USHORT)(rt_tick_get() % 10);
data[2] = (USHORT)(num++);
error_code = eMBMasterReqWriteMultipleHoldingRegister(SLAVE_ADDR, /* salve address */
MB_SEND_REG_START, /* register start address */
MB_SEND_REG_NUM, /* register total number */
data, /* data to be written */
RT_WAITING_FOREVER); /* timeout */
/* Record the number of errors */
if (error_code != MB_MRE_NO_ERR)
{
error_count++;
}
}
}
验证freemodbus主机功能正常
总结
- 注意modbus是基于RS485或串口的,注意配置好串口的引脚,包括HAL 引脚的初始化、时钟使能。
- 注意RS485接线
- freemodbus主机是一对多的,可以不断的尝试其他的命令。
- 只要一个协议通了,基本证明硬件测试环境正常,可以继续完善,如实现多机通信。
BUG
目前的现象是,主机轮询从机一段时间,10分钟左右吧,停止了。
后面有时间跟一下,到底为何停止呢?是软件定时器BUG,还是其他的问题?