Topic
- Binary Search
- Math
Description
https://leetcode.com/problems/valid-perfect-square/
Given a positive integer num, write a function which returns True if num is a perfect square else False.
Follow up: Do not use any built-in library function such as sqrt
.
Example 1:
Input: num = 16
Output: true
Example 2:
Input: num = 14
Output: false
Constraints:
- 1 <= num <= 2³¹ - 1
Analysis
方法一:将符合要求的数缓存好,再二分查找。
方法二:巧用奇数数列求和公式。
1 = 1 1 = 1 1=1
4 = 1 + 3 4 = 1 + 3 4=1+3
9 = 1 + 3 + 5 9 = 1 + 3 + 5 9=1+3+5
16 = 1 + 3 + 5 + 7 16 = 1 + 3 + 5 + 7 16=1+3+5+7
25 = 1 + 3 + 5 + 7 + 9 25 = 1 + 3 + 5 + 7 + 9 25=1+3+5+7+9
36 = 1 + 3 + 5 + 7 + 9 + 11 36 = 1 + 3 + 5 + 7 + 9 + 11 36=1+3+5+7+9+11
. . . . . . ...
1 + 3 + . . . + ( 2 n − 1 ) = ( 2 n − 1 + 1 ) ⋅ n 2 = n 2 1+3+. . .+(2n-1)=\frac{(2n-1 + 1)\cdot n}{2}=n^2 1+3+...+(2n−1)=2(2n−1+1)⋅n=n2
方法三:二分查找法
方法四:牛顿迭代法
Submission
package com.lun.easy;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class ValidPerfectSquare {
private static List<Integer> squareList;
static {
squareList = new ArrayList<>();
int i = 1, product;
while (true) {
if ((product = i * i) < 0)
break;
squareList.add(product);
i++;
}
}
// 方法一:将符合要求的数缓存好,再二分查找
public boolean isPerfectSquare(int num) {
return Collections.binarySearch(squareList, num) >= 0;
}
// 方法二:奇数数列求和
public boolean isPerfectSquare2(int num) {
int i = 1;
while (num > 0) {
num -= i;
i += 2;
}
return num == 0;
}
// 方法三:二分查找法
public boolean isPerfectSquare3(int num) {
int low = 1, high = num;
while (low <= high) {
long mid = (low + high) >>> 1;
if (mid * mid == num) {
return true;
} else if (mid * mid < num) {
low = (int) mid + 1;
} else {
high = (int) mid - 1;
}
}
return false;
}
// 方法四:牛顿迭代法
public boolean isPerfectSquare4(int num) {
long x = num;
while (x * x > num) {
x = (x + num / x) >> 1;
}
return x * x == num;
}
}
Test
import static org.junit.Assert.*;
import org.junit.Test;
public class ValidPerfectSquareTest {
@Test
public void test() {
ValidPerfectSquare obj = new ValidPerfectSquare();
assertTrue(obj.isPerfectSquare(1));
assertTrue(obj.isPerfectSquare(4));
assertTrue(obj.isPerfectSquare(9));
assertTrue(obj.isPerfectSquare(16));
assertTrue(obj.isPerfectSquare(25));
assertTrue(obj.isPerfectSquare(36));
assertTrue(obj.isPerfectSquare(49));
assertFalse(obj.isPerfectSquare(50));
}
@Test
public void test2() {
ValidPerfectSquare obj = new ValidPerfectSquare();
assertTrue(obj.isPerfectSquare2(1));
assertTrue(obj.isPerfectSquare2(4));
assertTrue(obj.isPerfectSquare2(9));
assertTrue(obj.isPerfectSquare2(16));
assertTrue(obj.isPerfectSquare2(25));
assertTrue(obj.isPerfectSquare2(36));
assertTrue(obj.isPerfectSquare2(49));
assertFalse(obj.isPerfectSquare2(50));
}
@Test
public void test3() {
ValidPerfectSquare obj = new ValidPerfectSquare();
assertTrue(obj.isPerfectSquare3(1));
assertTrue(obj.isPerfectSquare3(4));
assertTrue(obj.isPerfectSquare3(9));
assertTrue(obj.isPerfectSquare3(16));
assertTrue(obj.isPerfectSquare3(25));
assertTrue(obj.isPerfectSquare3(36));
assertTrue(obj.isPerfectSquare3(49));
assertFalse(obj.isPerfectSquare3(50));
assertFalse(obj.isPerfectSquare3(Integer.MAX_VALUE));
}
@Test
public void test4() {
ValidPerfectSquare obj = new ValidPerfectSquare();
assertTrue(obj.isPerfectSquare4(1));
assertTrue(obj.isPerfectSquare4(4));
assertTrue(obj.isPerfectSquare4(9));
assertTrue(obj.isPerfectSquare4(16));
assertTrue(obj.isPerfectSquare4(25));
assertTrue(obj.isPerfectSquare4(36));
assertTrue(obj.isPerfectSquare4(49));
assertFalse(obj.isPerfectSquare4(50));
}
}