02-NLP-02-朴素贝叶斯与应用

朴素贝叶斯与应用 

贝叶斯理论简单回顾

在我们有一大堆样本(包含特征类别)的时候,我们非常容易通过统计得到 p(|)p(特征|类别).

大家又都很熟悉下述公式:

p(x)p(y|x)=p(y)p(x|y)p(x)p(y|x)=p(y)p(x|y)

所以做一个小小的变换

p()p(|)=p()p(|)p(特征)p(类别|特征)=p(类别)p(特征|类别)
p(|)=p()p(|)p()p(类别|特征)=p(类别)p(特征|类别)p(特征)
 

独立假设

看起来很简单,但实际上,你的特征可能是很多维的

p(features|class)=p(f0,f1,,fn|c)p(features|class)=p(f0,f1,…,fn|c)

就算是2个维度吧,可以简单写成

p(f0,f1|c)=p(f1|c,f0)p(f0|c)p(f0,f1|c)=p(f1|c,f0)p(f0|c)

这时候我们加一个特别牛逼的假设:特征之间是独立的。这样就得到了

p(f0,f1|c)=p(f1|c)p(f0|c)p(f0,f1|c)=p(f1|c)p(f0|c)

其实也就是:

p(f0,f1,,fn|c)=Πnip(fi|c)p(f0,f1,…,fn|c)=Πinp(fi|c)
 

贝叶斯分类器

OK,回到机器学习,其实我们就是对每个类别计算一个概率p(ci)p(ci),然后再计算所有特征的条件概率p(fj|ci)p(fj|ci),那么分类的时候我们就是依据贝叶斯找一个最可能的类别:

p(classi|f0,f1,,fn)=p(classi)p(f0,f1,,fn)Πnjp(fj|ci)p(classi|f0,f1,…,fn)=p(classi)p(f0,f1,…,fn)Πjnp(fj|ci)
 

文本分类问题

下面我们来看一个文本分类问题,经典的新闻主题分类,用朴素贝叶斯怎么做。

In [2]:
#coding: utf-8
import os
import time
import random import jieba #处理中文 #import nltk #处理英文 import sklearn from sklearn.naive_bayes import MultinomialNB import numpy as np import pylab as pl import matplotlib.pyplot as plt 
In [4]:
#粗暴的词去重
def make_word_set(words_file): words_set = set() with open(words_file, 'r') as fp: for line in fp.readlines(): word = line.strip().decode("utf-8") if len(word)>0 and word not in words_set: # 去重 words_set.add(word) return words_set 
In [5]:
# 文本处理,也就是样本生成过程
def text_processing(folder_path, test_size=0.2): folder_list = os.listdir(folder_path) data_list = [] class_list = [] # 遍历文件夹 for folder in folder_list: new_folder_path = os.path.join(folder_path, folder) files = os.listdir(new_folder_path) # 读取文件 j = 1 for file in files: if j > 100: # 怕内存爆掉,只取100个样本文件,你可以注释掉取完 break with open(os.path.join(new_folder_path, file), 'r') as fp: raw = fp.read() ## 是的,随处可见的jieba中文分词 jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windows word_cut = jieba.cut(raw, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertor word_list = list(word_cut) # genertor转化为list,每个词unicode格式 jieba.disable_parallel() # 关闭并行分词模式 data_list.append(word_list) #训练集list class_list.append(folder.decode('utf-8')) #类别 j += 1 ## 粗暴地划分训练集和测试集 data_class_list = zip(data_list, class_list) random.shuffle(data_class_list) index = int(len(data_class_list)*test_size)+1 train_list = data_class_list[index:] test_list = data_class_list[:index] train_data_list, train_class_list = zip(*train_list) test_data_list, test_class_list = zip(*test_list) #其实可以用sklearn自带的部分做 #train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size) # 统计词频放入all_words_dict all_words_dict = {} for word_list in train_data_list: for word in word_list: if all_words_dict.has_key(word): all_words_dict[word] += 1 else: all_words_dict[word] = 1 # key函数利用词频进行降序排序 all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为list all_words_list = list(zip(*all_words_tuple_list)[0]) return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list 
In [6]:
def words_dict(all_words_list, deleteN, stopwords_set=set()): # 选取特征词 feature_words = [] n = 1 for t in range(deleteN, len(all_words_list), 1): if n > 1000: # feature_words的维度1000 break if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1<len(all_words_list[t])<5: feature_words.append(all_words_list[t]) n += 1 return feature_words 
In [7]:
# 文本特征
def text_features(train_data_list, test_data_list, feature_words, flag='nltk'): def text_features(text, feature_words): text_words = set(text) ## ----------------------------------------------------------------------------------- if flag == 'nltk': ## nltk特征 dict features = {word:1 if word in text_words else 0 for word in feature_words} elif flag == 'sklearn': ## sklearn特征 list features = [1 if word in text_words else 0 for word in feature_words] else: features = [] ## ----------------------------------------------------------------------------------- return features train_feature_list = [text_features(text, feature_words) for text in train_data_list] test_feature_list = [text_features(text, feature_words) for text in test_data_list] return train_feature_list, test_feature_list 
In [8]:
# 分类,同时输出准确率等
def text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'): ## ----------------------------------------------------------------------------------- if flag == 'nltk': ## 使用nltk分类器 train_flist = zip(train_feature_list, train_class_list) test_flist = zip(test_feature_list, test_class_list) classifier = nltk.classify.NaiveBayesClassifier.train(train_flist) test_accuracy = nltk.classify.accuracy(classifier, test_flist) elif flag == 'sklearn': ## sklearn分类器 classifier = MultinomialNB().fit(train_feature_list, train_class_list) test_accuracy = classifier.score(test_feature_list, test_class_list) else: test_accuracy = [] return test_accuracy 
In [13]:
print "start"

## 文本预处理
folder_path = './Database/SogouC/Sample' all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = text_processing(folder_path, test_size=0.2) # 生成stopwords_set stopwords_file = './stopwords_cn.txt' stopwords_set = make_word_set(stopwords_file) ## 文本特征提取和分类 # flag = 'nltk' flag = 'sklearn' deleteNs = range(0, 1000, 20) test_accuracy_list = [] for deleteN in deleteNs: # feature_words = words_dict(all_words_list, deleteN) feature_words = words_dict(all_words_list, deleteN, stopwords_set) train_feature_list, test_feature_list = text_features(train_data_list, test_data_list, feature_words, flag) test_accuracy = text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag) test_accuracy_list.append(test_accuracy) print test_accuracy_list # 结果评价 #plt.figure() plt.plot(deleteNs, test_accuracy_list) plt.title('Relationship of deleteNs and test_accuracy') plt.xlabel('deleteNs') plt.ylabel('test_accuracy') plt.show() #plt.savefig('result.png') print "finished" 
 
start
[0.63157894736842102, 0.63157894736842102, 0.63157894736842102, 0.57894736842105265, 0.63157894736842102, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.63157894736842102, 0.63157894736842102, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.63157894736842102, 0.68421052631578949, 0.63157894736842102, 0.63157894736842102, 0.57894736842105265, 0.52631578947368418, 0.63157894736842102, 0.63157894736842102, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.63157894736842102, 0.57894736842105265, 0.68421052631578949, 0.57894736842105265, 0.63157894736842102, 0.63157894736842102, 0.63157894736842102, 0.63157894736842102, 0.63157894736842102, 0.68421052631578949, 0.63157894736842102, 0.57894736842105265, 0.57894736842105265, 0.57894736842105265, 0.63157894736842102, 0.63157894736842102, 0.63157894736842102]
finished

猜你喜欢

转载自www.cnblogs.com/Josie-chen/p/9125045.html