机器学习需要通过建立模型进行自我学习,那么学习方法有哪些呢?本篇来给大家介绍一下机器学习中的无监督学习。如果还不了解什么是机器学习的,先浏览下这篇内容:
机器学习是什么?详解机器学习概念_程序媛珂珂的博客-CSDN博客
什么是无监督学习?
无监督学习跟监督学习的区别就是选取的样本数据无需有目标值,我们无需分析这些数据对某些结果的影响,只是分析这些数据内在的规律。
无监督学习常用在聚类分析上面。比如客户分群、因子降维等。比如RFM模型的使用,通过客户的销售行为(消费次数、最近消费时间、消费金额)指标,来对客户数据进行聚类:
- 重要价值客户:最近消费时间近、消费频次和消费金额都很高;
- 重要保持客户:最近消费时间较远,但消费频次和金额都很高,说明这是个一段时间没来的忠诚客户,我们需要主动和他保持联系;
- 重要发展客户:最近消费时间较近、消费金额高,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展;
- 重要挽留客户:最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当基于挽留措施。
除此之外,无监督学习也适用于降维,无监督学习比监督学习好处是数据不需要人工打标记,数据获取成本低。
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。
下面是部分截图,文末附免费下载方式。
目录
一、人工智能免费视频课程和项目
二、人工智能必读书籍
三、人工智能论文合集
四、机器学习+计算机视觉基础算法教程
五、深度学习机器学习速查表(共26张)
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。