【ROS学习笔记16】ROS常用仿真组件URDF集成Xacro

【ROS学习笔记16】ROS常用仿真组件URDF集成Xacro

写在前面,本系列笔记参考的是AutoLabor的教程,具体项目地址在 这里


前言

前面 URDF 文件构建机器人模型的过程中,存在若干问题。

问题1:在设计关节的位置时,需要按照一定的公式计算,公式是固定的,但是在 URDF 中依赖于人工计算,存在不便,容易计算失误,且当某些参数发生改变时,还需要重新计算。

问题2:URDF 中的部分内容是高度重复的,驱动轮与支撑轮的设计实现,不同轮子只是部分参数不同,形状、颜色、翻转量都是一致的,在实际应用中,构建复杂的机器人模型时,更是易于出现高度重复的设计,按照一般的编程涉及到重复代码应该考虑封装。

如果在编程语言中,可以通过变量结合函数直接解决上述问题,在 ROS 中,已经给出了类似编程的优化方案,称之为:Xacro

概念

Xacro 是 XML Macros 的缩写,Xacro 是一种 XML 宏语言,是可编程的 XML。

原理

Xacro 可以声明变量,可以通过数学运算求解,使用流程控制控制执行顺序,还可以通过类似函数的实现,封装固定的逻辑,将逻辑中需要的可变的数据以参数的方式暴露出去,从而提高代码复用率以及程序的安全性。

作用

较之于纯粹的 URDF 实现,可以编写更安全、精简、易读性更强的机器人模型文件,且可以提高编写效率。

另请参考:

http://wiki.ros.org/xacro


1. URDF优化Xacro

1.1 Xacro快速体验

**目的:**简单了解 xacro 的基本语法。

需求描述:

使用xacro优化上一节案例中驱动轮实现,需要使用变量封装底盘的半径、高度,使用数学公式动态计算底盘的关节点坐标,使用 Xacro 宏封装轮子重复的代码并调用宏创建两个轮子(注意: 在此,演示 Xacro 的基本使用,不必要生成合法的 URDF )。

准备:

创建功能包,导入 urdf 与 xacro。

1.Xacro文件编写

编写 Xacro 文件,以变量的方式封装属性(常量半径、高度、车轮半径…),以函数的方式封装重复实现(车轮的添加)。

<robot name="mycar" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- 属性封装 -->
    <xacro:property name="wheel_radius" value="0.0325" />
    <xacro:property name="wheel_length" value="0.0015" />
    <xacro:property name="PI" value="3.1415927" />
    <xacro:property name="base_link_length" value="0.08" />
    <xacro:property name="lidi_space" value="0.015" />

    <!-- 宏 -->
    <xacro:macro name="wheel_func" params="wheel_name flag" >
        <link name="${wheel_name}_wheel">
            <visual>
                <geometry>
                    <cylinder radius="${wheel_radius}" length="${wheel_length}" />
                </geometry>

                <origin xyz="0 0 0" rpy="${PI / 2} 0 0" />

                <material name="wheel_color">
                    <color rgba="0 0 0 0.3" />
                </material>
            </visual>
        </link>

        <!-- 3-2.joint -->
        <joint name="${wheel_name}2link" type="continuous">
            <parent link="base_link"  />
            <child link="${wheel_name}_wheel" />
            <!-- 
                x 无偏移
                y 车体半径
                z z= 车体高度 / 2 + 离地间距 - 车轮半径

            -->
            <origin xyz="0 ${0.1 * flag} ${(base_link_length / 2 + lidi_space - wheel_radius) * -1}" rpy="0 0 0" />
            <axis xyz="0 1 0" />
        </joint>

    </xacro:macro>
    <xacro:wheel_func wheel_name="left" flag="1" />
    <xacro:wheel_func wheel_name="right" flag="-1" />
</robot>

2.Xacro文件转换成 urdf 文件

命令行进入 xacro文件 所属目录,执行:

rosrun xacro xacro xxx.xacro > xxx.urdf

会将 xacro 文件解析为 urdf 文件,内容如下:

<?xml version="1.0" ?>
<!-- =================================================================================== -->
<!-- |    This document was autogenerated by xacro from test.xacro                     | -->
<!-- |    EDITING THIS FILE BY HAND IS NOT RECOMMENDED                                 | -->
<!-- =================================================================================== -->
<robot name="mycar">
  <link name="left_wheel">
    <visual>
      <geometry>
        <cylinder length="0.0015" radius="0.0325"/>
      </geometry>
      <origin rpy="1.57079635 0 0" xyz="0 0 0"/>
      <material name="wheel_color">
        <color rgba="0 0 0 0.3"/>
      </material>
    </visual>
  </link>
  <!-- 3-2.joint -->
  <joint name="left2link" type="continuous">
    <parent link="base_link"/>
    <child link="left_wheel"/>
    <!-- 
                x 无偏移
                y 车体半径
                z z= 车体高度 / 2 + 离地间距 - 车轮半径

            -->
    <origin rpy="0 0 0" xyz="0 0.1 -0.0225"/>
    <axis xyz="0 1 0"/>
  </joint>
  <link name="right_wheel">
    <visual>
      <geometry>
        <cylinder length="0.0015" radius="0.0325"/>
      </geometry>
      <origin rpy="1.57079635 0 0" xyz="0 0 0"/>
      <material name="wheel_color">
        <color rgba="0 0 0 0.3"/>
      </material>
    </visual>
  </link>
  <!-- 3-2.joint -->
  <joint name="right2link" type="continuous">
    <parent link="base_link"/>
    <child link="right_wheel"/>
    <!-- 
                x 无偏移
                y 车体半径
                z z= 车体高度 / 2 + 离地间距 - 车轮半径

            -->
    <origin rpy="0 0 0" xyz="0 -0.1 -0.0225"/>
    <axis xyz="0 1 0"/>
  </joint>
</robot>

注意: 该案例编写生成的是非法的 URDF 文件,目的在于演示 Xacro 的极简使用以及优点。

示例结果:


1.2 Xacro语法详解

xacro 提供了可编程接口,类似于计算机语言,包括变量声明调用、函数声明与调用等语法实现。在使用 xacro 生成 urdf 时,根标签robot中必须包含命名空间声明:xmlns:xacro="http://wiki.ros.org/xacro"

1.属性与算数运算

用于封装 URDF 中的一些字段,比如: PAI 值,小车的尺寸,轮子半径 …

属性定义

<xacro:property name="xxxx" value="yyyy" />

属性调用

${属性名称}

算数运算

${数学表达式}

2.宏

类似于函数实现,提高代码复用率,优化代码结构,提高安全性

宏定义

<xacro:macro name="宏名称" params="参数列表(多参数之间使用空格分隔)">

    .....

    参数调用格式: ${参数名}

</xacro:macro>

宏调用

<xacro:宏名称 参数1=xxx 参数2=xxx/>

3.文件包含

机器人由多部件组成,不同部件可能封装为单独的 xacro 文件,最后再将不同的文件集成,组合为完整机器人,可以使用文件包含实现

文件包含

<robot name="xxx" xmlns:xacro="http://wiki.ros.org/xacro">
      <xacro:include filename="my_base.xacro" />
      <xacro:include filename="my_camera.xacro" />
      <xacro:include filename="my_laser.xacro" />
      ....
</robot>

1.3 Xacro完整使用流程示例

需求描述:

使用 Xacro 优化 URDF 版的小车底盘模型实现

结果演示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FDA664JA-1678760635723)(ROS Tutorial.assets/URDF_test.PNG)]

1.编写 Xacro 文件

<!--
    使用 xacro 优化 URDF 版的小车底盘实现:

    实现思路:
    1.将一些常量、变量封装为 xacro:property
      比如:PI 值、小车底盘半径、离地间距、车轮半径、宽度 ....
    2.使用 宏 封装驱动轮以及支撑轮实现,调用相关宏生成驱动轮与支撑轮

-->
<!-- 根标签,必须声明 xmlns:xacro -->
<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <!-- 封装变量、常量 -->
    <xacro:property name="PI" value="3.141"/>
    <!-- 宏:黑色设置 -->
    <material name="black">
        <color rgba="0.0 0.0 0.0 1.0" />
    </material>
    <!-- 底盘属性 -->
    <xacro:property name="base_footprint_radius" value="0.001" /> <!-- base_footprint 半径  -->
    <xacro:property name="base_link_radius" value="0.1" /> <!-- base_link 半径 -->
    <xacro:property name="base_link_length" value="0.08" /> <!-- base_link 长 -->
    <xacro:property name="earth_space" value="0.015" /> <!-- 离地间距 -->

    <!-- 底盘 -->
    <link name="base_footprint">
      <visual>
        <geometry>
          <sphere radius="${base_footprint_radius}" />
        </geometry>
      </visual>
    </link>

    <link name="base_link">
      <visual>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <material name="yellow">
          <color rgba="0.5 0.3 0.0 0.5" />
        </material>
      </visual>
    </link>

    <joint name="base_link2base_footprint" type="fixed">
      <parent link="base_footprint" />
      <child link="base_link" />
      <origin xyz="0 0 ${earth_space + base_link_length / 2 }" />
    </joint>

    <!-- 驱动轮 -->
    <!-- 驱动轮属性 -->
    <xacro:property name="wheel_radius" value="0.0325" /><!-- 半径 -->
    <xacro:property name="wheel_length" value="0.015" /><!-- 宽度 -->
    <!-- 驱动轮宏实现 -->
    <xacro:macro name="add_wheels" params="name flag">
      <link name="${name}_wheel">
        <visual>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
          <material name="black" />
        </visual>
      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="${name}_wheel" />
        <origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" />
        <axis xyz="0 1 0" />
      </joint>
    </xacro:macro>
    <xacro:add_wheels name="left" flag="1" />
    <xacro:add_wheels name="right" flag="-1" />
    <!-- 支撑轮 -->
    <!-- 支撑轮属性 -->
    <xacro:property name="support_wheel_radius" value="0.0075" /> <!-- 支撑轮半径 -->

    <!-- 支撑轮宏 -->
    <xacro:macro name="add_support_wheel" params="name flag" >
      <link name="${name}_wheel">
        <visual>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black" />
        </visual>
      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
          <parent link="base_link" />
          <child link="${name}_wheel" />
          <origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" />
          <axis xyz="1 1 1" />
      </joint>
    </xacro:macro>

    <xacro:add_support_wheel name="front" flag="1" />
    <xacro:add_support_wheel name="back" flag="-1" />

</robot>

2.集成launch文件

**方式1:**先将 xacro 文件转换出 urdf 文件,然后集成

先将 xacro 文件解析成 urdf 文件:

rosrun xacro xacro xxx.xacro > xxx.urdf

然后再按照之前的集成方式直接整合 launch 文件,内容示例:

<launch>
    <param name="robot_description" textfile="$(find demo01_urdf_helloworld)/urdf/xacro/my_base.urdf" />

    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find demo01_urdf_helloworld)/config/helloworld.rviz" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" output="screen" />
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" output="screen" />

</launch>

**方式2:**在 launch 文件中直接加载 xacro(建议使用)

launch 内容示例:

<launch>
    <param name="robot_description" command="$(find xacro)/xacro $(find demo01_urdf_helloworld)/urdf/xacro/my_base.urdf.xacro" />

    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find demo01_urdf_helloworld)/config/helloworld.rviz" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" output="screen" />
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" output="screen" />

</launch>

核心代码:

<param name="robot_description" command="$(find xacro)/xacro $(find demo01_urdf_helloworld)/urdf/xacro/my_base.urdf.xacro" />

加载robot_description时使用command属性,属性值就是调用 xacro 功能包的 xacro 程序直接解析 xacro 文件。


一个示例结果:

1.4 Xacro实操

需求描述:

在前面小车底盘基础之上,添加摄像头和雷达传感器。

结果演示:

实现分析:

机器人模型由多部件组成,可以将不同组件设置进单独文件,最终通过文件包含实现组件的拼装。

实现流程:

  1. 首先编写摄像头和雷达的 xacro 文件
  2. 然后再编写一个组合文件,组合底盘、摄像头与雷达
  3. 最后,通过 launch 文件启动 Rviz 并显示模型

1.摄像头和雷达 Xacro 文件实现

摄像头 xacro 文件:

<!-- 摄像头相关的 xacro 文件 -->
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- 摄像头属性 -->
    <xacro:property name="camera_length" value="0.01" /> <!-- 摄像头长度(x) -->
    <xacro:property name="camera_width" value="0.025" /> <!-- 摄像头宽度(y) -->
    <xacro:property name="camera_height" value="0.025" /> <!-- 摄像头高度(z) -->
    <xacro:property name="camera_x" value="0.08" /> <!-- 摄像头安装的x坐标 -->
    <xacro:property name="camera_y" value="0.0" /> <!-- 摄像头安装的y坐标 -->
    <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> <!-- 摄像头安装的z坐标:底盘高度 / 2 + 摄像头高度 / 2  -->

    <!-- 摄像头关节以及link -->
    <link name="camera">
        <visual>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
    </link>

    <joint name="camera2base_link" type="fixed">
        <parent link="base_link" />
        <child link="camera" />
        <origin xyz="${camera_x} ${camera_y} ${camera_z}" />
    </joint>
</robot>

雷达 xacro 文件:

<!--
    小车底盘添加雷达
-->
<robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro">

    <!-- 雷达支架 -->
    <xacro:property name="support_length" value="0.15" /> <!-- 支架长度 -->
    <xacro:property name="support_radius" value="0.01" /> <!-- 支架半径 -->
    <xacro:property name="support_x" value="0.0" /> <!-- 支架安装的x坐标 -->
    <xacro:property name="support_y" value="0.0" /> <!-- 支架安装的y坐标 -->
    <xacro:property name="support_z" value="${base_link_length / 2 + support_length / 2}" /> <!-- 支架安装的z坐标:底盘高度 / 2 + 支架高度 / 2  -->

    <link name="support">
        <visual>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="red">
                <color rgba="0.8 0.2 0.0 0.8" />
            </material>
        </visual>
    </link>

    <joint name="support2base_link" type="fixed">
        <parent link="base_link" />
        <child link="support" />
        <origin xyz="${support_x} ${support_y} ${support_z}" />
    </joint>


    <!-- 雷达属性 -->
    <xacro:property name="laser_length" value="0.05" /> <!-- 雷达长度 -->
    <xacro:property name="laser_radius" value="0.03" /> <!-- 雷达半径 -->
    <xacro:property name="laser_x" value="0.0" /> <!-- 雷达安装的x坐标 -->
    <xacro:property name="laser_y" value="0.0" /> <!-- 雷达安装的y坐标 -->
    <xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" /> <!-- 雷达安装的z坐标:支架高度 / 2 + 雷达高度 / 2  -->

    <!-- 雷达关节以及link -->
    <link name="laser">
        <visual>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
    </link>

    <joint name="laser2support" type="fixed">
        <parent link="support" />
        <child link="laser" />
        <origin xyz="${laser_x} ${laser_y} ${laser_z}" />
    </joint>
</robot>

2.组合底盘摄像头与雷达的 xacro 文件

<!-- 组合小车底盘与摄像头与雷达 -->
<robot name="my_car_camera" xmlns:xacro="http://wiki.ros.org/xacro">
    <xacro:include filename="my_base.urdf.xacro" />
    <xacro:include filename="my_camera.urdf.xacro" />
    <xacro:include filename="my_laser.urdf.xacro" />
</robot>

3.launch 文件

<launch>
    <param name="robot_description" command="$(find xacro)/xacro $(find demo01_urdf_helloworld)/urdf/xacro/my_base_camera_laser.urdf.xacro" />

    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find demo01_urdf_helloworld)/config/helloworld.rviz" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" output="screen" />
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" output="screen" />
</launch>

示例结果:


2. Arbotix控制机器人运动

通过 URDF 结合 rviz 可以创建并显示机器人模型,不过,当前实现的只是静态模型,如何控制模型的运动呢?在此,可以调用 Arbotix 实现此功能。

简介

**Arbotix:**Arbotix 是一款控制电机、舵机的控制板,并提供相应的 ros 功能包,这个功能包的功能不仅可以驱动真实的 Arbotix 控制板,它还提供一个差速控制器,通过接受速度控制指令更新机器人的 joint 状态,从而帮助我们实现机器人在 rviz 中的运动。

这个差速控制器在 arbotix_python 程序包中,完整的 arbotix 程序包还包括多种控制器,分别对应 dynamixel 电机、多关节机械臂以及不同形状的夹持器。


2.1 Arbotix使用流程

接下来,通过一个案例演示 arbotix 的使用。

需求描述:

控制机器人模型在 rviz 中做圆周运动

结果演示:

实现流程:

  1. 安装 Arbotix
  2. 创建新功能包,准备机器人 urdf、xacro 文件
  3. 添加 Arbotix 配置文件
  4. 编写 launch 文件配置 Arbotix
  5. 启动 launch 文件并控制机器人模型运动

1.安装 Arbotix

方式1: 命令行调用

sudo apt-get install ros-<<VersionName()>>-arbotix

将 <<VsersionName()>> 替换成当前 ROS 版本名称,如果提示功能包无法定位,请采用方式2。

方式2: 源码安装

先从 github 下载源码,然后调用 catkin_make 编译

git clone https://github.com/vanadiumlabs/arbotix_ros.git

2.创建新功能包,准备机器人 urdf、xacro

urdf 和 xacro 调用上一讲实现即可

3.添加 arbotix 所需的配置文件

添加 arbotix 所需配置文件

# 该文件是控制器配置,一个机器人模型可能有多个控制器,比如: 底盘、机械臂、夹持器(机械手)....
# 因此,根 name 是 controller
controllers: {
    
    
   # 单控制器设置
   base_controller: {
    
    
          #类型: 差速控制器
       type: diff_controller,
       #参考坐标
       base_frame_id: base_footprint, 
       #两个轮子之间的间距
       base_width: 0.2,
       #控制频率
       ticks_meter: 2000, 
       #PID控制参数,使机器人车轮快速达到预期速度
       Kp: 12, 
       Kd: 12, 
       Ki: 0, 
       Ko: 50, 
       #加速限制
       accel_limit: 1.0 
    }
}

另请参考: http://wiki.ros.org/arbotix_python/diff_controller

4.launch 文件中配置 arbotix 节点

launch 示例代码

<node name="arbotix" pkg="arbotix_python" type="arbotix_driver" output="screen">
     <rosparam file="$(find my_urdf05_rviz)/config/hello.yaml" command="load" />
     <param name="sim" value="true" />
</node>

代码解释:

调用了 arbotix_python 功能包下的 arbotix_driver 节点

arbotix 驱动机器人运行时,需要获取机器人信息,可以通过 file 加载配置文件

在仿真环境下,需要配置 sim 为 true

5.启动 launch 文件并控制机器人模型运动

**启动launch:**roslaunch xxxx …launch

配置 rviz:

控制小车运动:

此时调用 rostopic list 会发现一个熟悉的话题: /cmd_vel

也就说我们可以发布 cmd_vel 话题消息控制小车运动了,该实现策略有多种,可以另行编写节点,或者更简单些可以直接通过如下命令发布消息:

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0.5}}'

现在,小车就可以运动起来了。

另请参考:

http://wiki.ros.org/arbotix

示例结果:


Reference

http://www.autolabor.com.cn/book/ROSTutorials/di-2-zhang-ros-jia-gou-she-ji/23-fu-wu-tong-xin/224-fu-wu-tong-xin-zi-ding-yi-srv-diao-yong-b-python.html

猜你喜欢

转载自blog.csdn.net/qq_44940689/article/details/129506699