20221012 泊松公式

在这里插入图片描述

基本设定:

设本体坐标系 D \mathcal D D 为动坐标系,惯性坐标系 S \mathcal S S 为静坐标系。

设本体坐标系 D \mathcal D D x x x y y y z z z 轴上的单位矢量分别为 i \boldsymbol{i} i j \boldsymbol{j} j k \boldsymbol{k} k,要描述这三个矢量,需要投影在某种坐标系上才行。当其投影在惯性坐标系 S \mathcal S S 上,则数学表示为 i S \boldsymbol{i}^{\mathcal S} iS j S \boldsymbol{j}^{\mathcal S} jS k S \boldsymbol{k}^{\mathcal S} kS

设在某一给定时刻,旋转角速度矢量为 ω \boldsymbol{\omega} ω,同样投影在惯性坐标系 S \mathcal S S 上,表示为 ω S \boldsymbol{\omega}^{\mathcal S} ωS,具体含义为 D \mathcal D D 相对于 S \mathcal S S 的角速度矢量在 S \mathcal S S 的投影。

i \boldsymbol{i} i 的端点为 A A A j \boldsymbol{j} j 的端点为 B B B k \boldsymbol{k} k 的端点为 C C C

分析过程:

A A A 的线速度为 v A S = d i S d t \boldsymbol{v}_A^{\mathcal S}=\frac{\text{d} \boldsymbol{i}^{\mathcal S}}{\text{d} t} vAS=dtdiS

又有 v A S = ω S × i S \boldsymbol{v}_A^{\mathcal S}=\boldsymbol{\omega}^{\mathcal S}\times \boldsymbol{i}^{\mathcal S} vAS=ωS×iS

因此可知 d i S d t = ω S × i S \frac{\text{d} \boldsymbol{i}^{\mathcal S}}{\text{d} t}=\boldsymbol{\omega}^{\mathcal S}\times \boldsymbol{i}^{\mathcal S} dtdiS=ωS×iS

同时,有 d j S d t = ω S × j S , d k S d t = ω S × k S \frac{\text{d} \boldsymbol{j}^{\mathcal S}}{\text{d} t}=\boldsymbol{\omega}^{\mathcal S}\times \boldsymbol{j}^{\mathcal S}, \quad\frac{\text{d} \boldsymbol{k}^{\mathcal S}}{\text{d} t}=\boldsymbol{\omega}^{\mathcal S}\times \boldsymbol{k}^{\mathcal S} dtdjS=ωS×jS,dtdkS=ωS×kS

这就是泊松公式。

可以证明,惯性坐标系随便选择,泊松公式均成立。

实例:

在这里插入图片描述
给定
i S = [ cos ⁡ ( π 2 t ) ,    2 2 sin ⁡ ( π 2 t ) ,    2 2 sin ⁡ ( π 2 t ) ] T \boldsymbol{i}^{\mathcal S}=[\operatorname{cos}(\frac{\pi}{2}t),~~\frac{\sqrt2}{2}\operatorname{sin}(\frac{\pi}{2}t),~~\frac{\sqrt2}{2}\operatorname{sin}(\frac{\pi}{2}t)]^T iS=[cos(2πt),  22 sin(2πt),  22 sin(2πt)]T相应的角速度矢量是红线 ω S = [ 0 ,    − π 2 2 ,    π 2 2 ] T \boldsymbol{\omega}^{\mathcal S}=[0,~~-\frac{\pi}{2\sqrt2},~~\frac{\pi}{2\sqrt2}]^T ωS=[0,  22 π,  22 π]T可以得到 d i S d t = [ − π 2 sin ⁡ ( π 2 t ) ,    2 2 π 2 cos ⁡ ( π 2 t ) ,    2 2 π 2 cos ⁡ ( π 2 t ) ] T \frac{\text{d}\boldsymbol{i}^{\mathcal S}}{\text{d} t}=[-\frac{\pi}{2}\operatorname{sin}(\frac{\pi}{2}t),~~\frac{\sqrt2}{2}\frac{\pi}{2}\operatorname{cos}(\frac{\pi}{2}t),~~\frac{\sqrt2}{2}\frac{\pi}{2}\operatorname{cos}(\frac{\pi}{2}t)]^T dtdiS=[2πsin(2πt),  22 2πcos(2πt),  22 2πcos(2πt)]T以及 ω S × i S = [ 0 − π 2 2 − π 2 2 π 2 2 0 0 π 2 2 0 0 ] [ cos ⁡ ( π 2 t ) 2 2 sin ⁡ ( π 2 t ) 2 2 sin ⁡ ( π 2 t ) ] = [ − π 2 sin ⁡ ( π 2 t ) 2 2 π 2 cos ⁡ ( π 2 t ) 2 2 π 2 cos ⁡ ( π 2 t ) ] = d i S d t \boldsymbol{\omega}^{\mathcal S}\times \boldsymbol{i}^{\mathcal S}=\begin{bmatrix} 0 & -\frac{\pi}{2\sqrt2} & -\frac{\pi}{2\sqrt2} \\ \frac{\pi}{2\sqrt2} & 0 & 0 \\ \frac{\pi}{2\sqrt2} & 0 & 0 \end{bmatrix}\begin{bmatrix} \operatorname{cos}(\frac{\pi}{2}t)\\ \frac{\sqrt2}{2}\operatorname{sin}(\frac{\pi}{2}t) \\ \frac{\sqrt2}{2}\operatorname{sin}(\frac{\pi}{2}t) \end{bmatrix}=\begin{bmatrix} -\frac{\pi}{2}\operatorname{sin}(\frac{\pi}{2}t)\\ \frac{\sqrt2}{2}\frac{\pi}{2}\operatorname{cos}(\frac{\pi}{2}t) \\ \frac{\sqrt2}{2}\frac{\pi}{2}\operatorname{cos}(\frac{\pi}{2}t) \end{bmatrix}=\frac{\text{d}\boldsymbol{i}^{\mathcal S}}{\text{d} t} ωS×iS= 022 π22 π22 π0022 π00 cos(2πt)22 sin(2πt)22 sin(2πt) = 2πsin(2πt)22 2πcos(2πt)22 2πcos(2πt) =dtdiS

需要说明的是,上述的 ω S \boldsymbol{\omega}^{\mathcal S} ωS i S \boldsymbol{i}^{\mathcal S} iS 都是投影在静坐标系上。

另外,假设有从 S \mathcal S S D \mathcal D D 的旋转矩阵为 R D S \boldsymbol{R}_{_{\mathcal D \mathcal S}} RDS,即有
ω D = R D S ω S \boldsymbol{\omega}^{\mathcal D} = \boldsymbol{R}_{_{\mathcal D \mathcal S}} \boldsymbol{\omega}^{\mathcal S} ωD=RDSωS i D = R D S i S \boldsymbol{i}^{\mathcal D} = \boldsymbol{R}_{_{\mathcal D \mathcal S}} \boldsymbol{i}^{\mathcal S} iD=RDSiS j D = R D S j S \boldsymbol{j}^{\mathcal D} = \boldsymbol{R}_{_{\mathcal D \mathcal S}} \boldsymbol{j}^{\mathcal S} jD=RDSjS k D = R D S k S \boldsymbol{k}^{\mathcal D} = \boldsymbol{R}_{_{\mathcal D \mathcal S}} \boldsymbol{k}^{\mathcal S} kD=RDSkS那么
( R D S ω S ) × ( R D S i S ) = R D S d i S d t ≠ d i D d t ( \boldsymbol{R}_{_{\mathcal D \mathcal S}}\boldsymbol{\omega}^{\mathcal S})\times ( \boldsymbol{R}_{_{\mathcal D \mathcal S}}\boldsymbol{i}^{\mathcal S})= \boldsymbol{R}_{_{\mathcal D \mathcal S}} \frac{\text{d}\boldsymbol{i}^{\mathcal S}}{\text{d} t}\neq \frac{\text{d}\boldsymbol{i}^{\mathcal D}}{\text{d} t} (RDSωS)×(RDSiS)=RDSdtdiS=dtdiD

千万要注意:

ω \boldsymbol{\omega} ω i \boldsymbol{i} i 也投影到本体坐标系之后,叉乘出来的矢量,是 ω \boldsymbol{\omega} ω i \boldsymbol{i} i 投影在惯性系的叉乘的矢量再投影到本体系的结果,而不是直接对 i D \boldsymbol{i}^{\mathcal D} iD求导

注:

注:图片来自https://baike.baidu.com/pic/%E6%B3%8A%E6%9D%BE%E5%85%AC%E5%BC%8F/53690428/1/960a304e251f95cad1c8f2d68344683e6709c93df40a?

推导过程参考 《理论力学》支希哲

猜你喜欢

转载自blog.csdn.net/weixin_44382195/article/details/127278222