【算法】粒子群优化

一、引言

        粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化技术,由Eberhart和Kennedy在1995年提出。它模拟鸟群觅食行为,通过个体与群体的协作来寻找最优解。通过模拟一群粒子的运动来寻找最优解。每个粒子代表一个可能的解,并且根据自身经验和群体经验来更新位置。

二、算法原理

        PSO算法中,每个解被视为搜索空间中的一个“粒子”,每个粒子代表了问题的潜在解,并具有相应的位置和速度。粒子在搜索空间中飞行,通过跟踪两个“极值”来更新自己的位置和速度:

  • 个体极值:粒子自身所找到的最优解。
  • 全局极值:整个粒子群中所有粒子所找到的最优解。

        粒子的位置和速度根据个体极值和全局极值进行更新。

三、数据结构

PSO算法涉及的主要数据结构包括:

  • 粒子(Particle)

    • position: 当前粒子的位置
    • velocity: 当前粒子的速度
    • best_position: 粒子的历史最佳位置
    • best_value: 粒子的最佳适应度值
  • 群体(Swarm)

    • particles: 存储所有粒子的列表
    • global_best_position: 全局最佳位置
    • global_best_value: 全局最佳适应度值
  • 目标函数:粒子优化的目标函数,用于评估解的质量。

四、算法使用场景

PSO算法适用于:

  • 函数优化:连续空间的全局优化问题、寻找函数的最小值或最大值
  • 神经网络训练:作为权重调整的优化算法。

扫描二维码关注公众号,回复: 17486265 查看本文章
  • 模式识别:特征选择和参数优化。
  • 机器学习参数优化:在训练机器学习模型时,PSO可以用于优化模型参数。
  • 组合优化问题:如旅行商问题(TSP)、排程问题等。
  • 工程设计问题:如结构优化、电路设计等。
  • 路径规划:在机器人和无人机的路径规划中寻找最优路径。
  • 图像处理:图像分割和特征选择等。

五、算法实现

伪代码如下:

function PSO(numParticles, numIterations):
Initialize particles and global best
For each iteration:
For each particle:
Update velocity
Update position
Evaluate the fitness function
Update personal and global bests

六、其他同类算法对比

  • 遗传算法(Genetic Algorithm, GA):基于自然选择和遗传机制的搜索算法。
  • 模拟退火(Simulated Annealing, SA):基于物理退火过程的优化方法。
  • 蚁群算法(Ant Colony Optimization, ACO):模拟蚂蚁觅食行为的启发式搜索算法。

七、多语言代码实现

    Java

import java.util.Random;

class Particle {
    double[] position;
    double[] velocity;
    double[] bestPosition;
    double bestValue;

    public Particle(int dimensions, double lowerBound, double upperBound) {
        position = new double[dimensions];
        velocity = new double[dimensions];
        bestPosition = new double[dimensions];
        Random rand = new Random();

        for (int i = 0; i < dimensions; i++) {
            position[i] = lowerBound + (upperBound - lowerBound) * rand.nextDouble();
            velocity[i] = (rand.nextDouble() - 0.5) * 2; // Random velocity
        }
        bestPosition = position.clone();
        bestValue = Double.POSITIVE_INFINITY;
    }
}

class PSO {
    private Particle[] particles;
    private double[] globalBestPosition;
    private double globalBestValue;
    private int dimensions;
    private double lowerBound;
    private double upperBound;
    private int maxIter;

    public PSO(int numParticles, int dimensions, double lowerBound, double upperBound, int maxIter) {
        this.dimensions = dimensions;
        this.lowerBound = lowerBound;
        this.upperBound = upperBound;
        this.maxIter = maxIter;
        particles = new Particle[numParticles];
        globalBestPosition = new double[dimensions];
        globalBestValue = Double.POSITIVE_INFINITY;

        for (int i = 0; i < numParticles; i++) {
            particles[i] = new Particle(dimensions, lowerBound, upperBound);
        }
    }

    public void optimize() {
        Random rand = new Random();
        for (int iter = 0; iter < maxIter; iter++) {
            for (Particle particle : particles) {
                double value = objectiveFunction(particle.position);

                if (value < particle.bestValue) {
                    particle.bestValue = value;
                    particle.bestPosition = particle.position.clone();
                }

                if (value < globalBestValue) {
                    globalBestValue = value;
                    globalBestPosition = particle.position.clone();
                }
            }

            for (Particle particle : particles) {
                double inertia = 0.5;
                double cognitive = 1.5 * rand.nextDouble() * (particle.bestPosition[0] - particle.position[0]);
                double social = 1.5 * rand.nextDouble() * (globalBestPosition[0] - particle.position[0]);
                for (int i = 0; i < dimensions; i++) {
                    particle.velocity[i] = inertia * particle.velocity[i] + cognitive + social;
                    particle.position[i] += particle.velocity[i];
                    // Bound check
                    if (particle.position[i] < lowerBound) particle.position[i] = lowerBound;
                    if (particle.position[i] > upperBound) particle.position[i] = upperBound;
                }
            }
        }
    }

    private double objectiveFunction(double[] position) {
        double sum = 0;
        for (double v : position) {
            sum += v * v; // Example: sum of squares
        }
        return sum;
    }

    public double[] getGlobalBestPosition() {
        return globalBestPosition;
    }

    public double getGlobalBestValue() {
        return globalBestValue;
    }

    public static void main(String[] args) {
        PSO pso = new PSO(30, 2, -10, 10, 100);
        pso.optimize();
        System.out.println("Best Position: " + Arrays.toString(pso.getGlobalBestPosition()));
        System.out.println("Best Value: " + pso.getGlobalBestValue());
    }
}

C++

#include <iostream>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <cmath>

class Particle {
public:
    std::vector<double> position;
    std::vector<double> velocity;
    std::vector<double> bestPosition;
    double bestValue;

    Particle(int dimensions, double lowerBound, double upperBound) {
        position.resize(dimensions);
        velocity.resize(dimensions);
        bestPosition.resize(dimensions);
        for (int i = 0; i < dimensions; ++i) {
            position[i] = lowerBound + static_cast<double>(rand()) / RAND_MAX * (upperBound - lowerBound);
            velocity[i] = (static_cast<double>(rand()) / RAND_MAX - 0.5) * 2; // Random velocity
        }
        bestPosition = position;
        bestValue = std::numeric_limits<double>::infinity();
    }
};

class PSO {
private:
    std::vector<Particle> particles;
    std::vector<double> globalBestPosition;
    double globalBestValue;
    int dimensions;
    double lowerBound;
    double upperBound;
    int maxIter;

public:
    PSO(int numParticles, int dimensions, double lowerBound, double upperBound, int maxIter)
        : dimensions(dimensions), lowerBound(lowerBound), upperBound(upperBound), maxIter(maxIter) {
        particles.reserve(numParticles);
        globalBestValue = std::numeric_limits<double>::infinity();
        for (int i = 0; i < numParticles; ++i) {
            particles.emplace_back(dimensions, lowerBound, upperBound);
        }
    }

    void optimize() {
        for (int iter = 0; iter < maxIter; ++iter) {
            for (auto& particle : particles) {
                double value = objectiveFunction(particle.position);

                if (value < particle.bestValue) {
                    particle.bestValue = value;
                    particle.bestPosition = particle.position;
                }

                if (value < globalBestValue) {
                    globalBestValue = value;
                    globalBestPosition = particle.position;
                }
            }

            for (auto& particle : particles) {
                double inertia = 0.5;
                double cognitive = 1.5 * static_cast<double>(rand()) / RAND_MAX * (particle.bestPosition[0] - particle.position[0]);
                double social = 1.5 * static_cast<double>(rand()) / RAND_MAX * (globalBestPosition[0] - particle.position[0]);
                for (int i = 0; i < dimensions; ++i) {
                    particle.velocity[i] = inertia * particle.velocity[i] + cognitive + social;
                    particle.position[i] += particle.velocity[i];
                    // Bound check
                    if (particle.position[i] < lowerBound) particle.position[i] = lowerBound;
                    if (particle.position[i] > upperBound) particle.position[i] = upperBound;
                }
            }
        }
    }

    double objectiveFunction(const std::vector<double>& position) {
        double sum = 0;
        for (double v : position) {
            sum += v * v; // Example: sum of squares
        }
        return sum;
    }

    const std::vector<double>& getGlobalBestPosition() const {
        return globalBestPosition;
    }

    double getGlobalBestValue() const {
        return globalBestValue;
    }
};

int main() {
    srand(static_cast<unsigned>(time(0)));
    PSO pso(30, 2, -10, 10, 100);
    pso.optimize();
    const auto& bestPosition = pso.getGlobalBestPosition();
    std::cout << "Best Position: ";
    for (const auto& pos : bestPosition) {
        std::cout << pos << " ";
    }
    std::cout << "\nBest Value: " << pso.getGlobalBestValue() << std::endl;
    return 0;
}

Python

import numpy as np

class Particle:
    def __init__(self, bounds):
        self.position = np.random.uniform(bounds[0], bounds[1], size=(len(bounds)//2,))
        self.velocity = np.random.uniform(-1, 1, size=(len(bounds)//2,))
        self.best_position = self.position.copy()
        self.best_value = float('inf')

class PSO:
    def __init__(self, func, bounds, num_particles, max_iter):
        self.func = func
        self.bounds = bounds
        self.num_particles = num_particles
        self.max_iter = max_iter
        self.particles = [Particle(bounds) for _ in range(num_particles)]
        self.global_best_position = None
        self.global_best_value = float('inf')

    def optimize(self):
        for _ in range(self.max_iter):
            for particle in self.particles:
                value = self.func(particle.position)
                
                if value < particle.best_value:
                    particle.best_value = value
                    particle.best_position = particle.position.copy()
                
                if value < self.global_best_value:
                    self.global_best_value = value
                    self.global_best_position = particle.position.copy()

            for particle in self.particles:
                r1, r2 = np.random.rand(2)
                inertia = 0.5
                cognitive = 1.5 * r1 * (particle.best_position - particle.position)
                social = 1.5 * r2 * (self.global_best_position - particle.position)
                particle.velocity = inertia * particle.velocity + cognitive + social
                particle.position += particle.velocity
                
                # Bound check
                particle.position = np.clip(particle.position, self.bounds[0], self.bounds[1])

        return self.global_best_position, self.global_best_value

# Example usage
def objective_function(x):
    return sum(x**2)

bounds = [-10, 10]
pso = PSO(objective_function, bounds, num_particles=30, max_iter=100)
best_position, best_value = pso.optimize()
print(f"Best Position: {best_position}, Best Value: {best_value}")

 Go

package main

import (
    "fmt"
    "math/rand"
    "time"
)

type Particle struct {
    position     []float64
    velocity     []float64
    bestPosition []float64
    bestValue    float64
}

type PSO struct {
    particles          []Particle
    globalBestPosition []float64
    globalBestValue    float64
    dimensions         int
    lowerBound         float64
    upperBound         float64
    maxIter            int
}

func NewParticle(dimensions, lowerBound, upperBound float64) Particle {
    position := make([]float64, dimensions)
    velocity := make([]float64, dimensions)
    bestPosition := make([]float64, dimensions)

    for i := 0; i < int(dimensions); i++ {
        position[i] = lowerBound + rand.Float64()*(upperBound-lowerBound)
        velocity[i] = (rand.Float64() - 0.5) * 2 // Random velocity
    }
    copy(bestPosition, position)
    return Particle{position, velocity, bestPosition, 1e10}
}

func NewPSO(numParticles, dimensions int, lowerBound, upperBound float64, maxIter int) *PSO {
    particles := make([]Particle, numParticles)
    for i := 0; i < numParticles; i++ {
        particles[i] = NewParticle(float64(dimensions), lowerBound, upperBound)
    }
    return &PSO{particles, nil, 1e10, dimensions, lowerBound, upperBound, maxIter}
}

func (pso *PSO) objectiveFunction(position []float64) float64 {
    sum := 0.0
    for _, v := range position {
        sum += v * v // Example: sum of squares
    }
    return sum
}

func (pso *PSO) Optimize() {
    for iter := 0; iter < pso.maxIter; iter++ {
        for i := range pso.particles {
            particle := &pso.particles[i]
            value := pso.objectiveFunction(particle.position)

            if value < particle.bestValue {
                particle.bestValue = value
                particle.bestPosition = make([]float64, len(particle.position))
                copy(particle.bestPosition, particle.position)
            }

            if value < pso.globalBestValue {
                pso.globalBestValue = value
                pso.globalBestPosition = make([]float64, len(particle.position))
                copy(pso.globalBestPosition, particle.position)
            }
        }

        for i := range pso.particles {
            particle := &pso.particles[i]
            inertia := 0.5
            cognitive := 1.5 * rand.Float64() * (particle.bestPosition[0] - particle.position[0])
            social := 1.5 * rand.Float64() * (pso.globalBestPosition[0] - particle.position[0])

            for j := 0; j < pso.dimensions; j++ {
                particle.velocity[j] = inertia*particle.velocity[j] + cognitive + social
                particle.position[j] += particle.velocity[j]
                // Bound check
                if particle.position[j] < pso.lowerBound {
                    particle.position[j] = pso.lowerBound
                }
                if particle.position[j] > pso.upperBound {
                    particle.position[j] = pso.upperBound
                }
            }
        }
    }
}

func main() {
    rand.Seed(time.Now().UnixNano())
    pso := NewPSO(30, 2, -10, 10, 100)
    pso.Optimize()
    fmt.Printf("Best Position: %v\n", pso.globalBestPosition)
    fmt.Printf("Best Value: %v\n", pso.globalBestValue)
}

八、实际服务应用场景与代码框架

        实现一个供应链优化系统,使用粒子群优化算法来确定最优的货物分配策略。

系统架构

        问题定义:定义货物分配的优化目标和约束条件。

        粒子初始化:初始化粒子群,每个粒子代表一种可能的货物分配方案。

        评估与更新:评估每个粒子的适应度,并根据PSO算法更新粒子的位置和速度。

        最优解获取:经过多次迭代后,获取最优的货物分配方案。

代码框架

以下是使用Python实现的供应链优化系统的代码框架:

class SupplyChainOptimizer:
    def __init__(self, num_particles, dimensions, lower_bound, upper_bound):
        self.pso = PSO(num_particles, dimensions, lower_bound, upper_bound)

    def evaluate_fitness(self, particle):
        # 评估货物分配方案的适应度
        pass

    def optimize(self, iterations):
        for _ in range(iterations):
            self.pso.update_velocity_position()
            self.pso.evaluate()

    def get_best_solution(self):
        # 获取最优解
        pass

# 使用示例
optimizer = SupplyChainOptimizer(num_particles=30, dimensions=5, lower_bound=-10, upper_bound=10)
optimizer.optimize(100)
best_solution = optimizer.get_best_solution()
print(f"Best solution: {best_solution}")

   数据准备

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# Load dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

定义目标函数

def objective_function(params):
    C, gamma = params
    model = SVC(C=C, gamma=gamma)
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    return -accuracy_score(y_test, predictions)  # Minimize negative accuracy

粒子群优化实现

class Particle:
    def __init__(self, bounds):
        self.position = np.random.uniform(bounds[0], bounds[1], size=(len(bounds)//2,))
        self.velocity = np.random.uniform(-1, 1, size=(len(bounds)//2,))
        self.best_position = self.position.copy()
        self.best_value = float('inf')

class PSO:
    def __init__(self, func, bounds, num_particles, max_iter):
        self.func = func
        self.bounds = bounds
        self.num_particles = num_particles
        self.max_iter = max_iter
        self.particles = [Particle(bounds) for _ in range(num_particles)]
        self.global_best_position = None
        self.global_best_value = float('inf')

    def optimize(self):
        for _ in range(self.max_iter):
            for particle in self.particles:
                value = self.func(particle.position)
                
                if value < particle.best_value:
                    particle.best_value = value
                    particle.best_position = particle.position.copy()
                
                if value < self.global_best_value:
                    self.global_best_value = value
                    self.global_best_position = particle.position.copy()

            for particle in self.particles:
                r1, r2 = np.random.rand(2)
                inertia = 0.5
                cognitive = 1.5 * r1 * (particle.best_position - particle.position)
                social = 1.5 * r2 * (self.global_best_position - particle.position)
                particle.velocity = inertia * particle.velocity + cognitive + social
                particle.position += particle.velocity
                
                # Bound check
                particle.position = np.clip(particle.position, self.bounds[0], self.bounds[1])

        return self.global_best_position, self.global_best_value

 执行优化

bounds = [[0.1, 100], [0.0001, 1]]  # C and gamma bounds
pso = PSO(objective_function, bounds, num_particles=30, max_iter=100)
best_params, best_value = pso.optimize()
print(f"Best Parameters: C={best_params[0]}, gamma={best_params[1]}, Best Value: {best_value}")

        过去与现在:PSO最初应用于函数优化问题,随着研究的深入,逐渐扩展到机器学习、数据挖掘、图像处理等多个领域。近年来,研究者对PSO进行了多种改进,如引入混沌理论、模糊逻辑等,以增强其全局搜索能力和收敛速度。

        优势:PSO具有简单易懂的结构和较少的参数设置,适用于多种优化问题。它能够有效地处理非线性、多峰值和高维问题,且收敛速度较快,适合实时优化。

        缺点:尽管PSO表现出色,但仍存在一些不足之处,如易陷入局部最优解、对参数设置敏感等。此外,在处理高维复杂问题时,可能会出现收敛速度减慢的问题。

        粒子群优化算法凭借其灵活性和有效性,已成为优化领域的重要工具,仍有广阔的发展空间。

猜你喜欢

转载自blog.csdn.net/wnm23/article/details/141468653