卷积神经网络【CNN】--卷积层的原理详细解读

卷积层(Convolutional Layer)是卷积神经网络(Convolutional Neural Network, CNN)中的核心组件,它通过卷积运算对输入数据进行特征提取。以下是对卷积层的相关概述:

一、基本概念

定义:卷积层由多个卷积单元组成,每个卷积单元的参数通过反向传播算法优化得到。卷积运算的目的是提取输入数据的局部特征。

作用:在图像处理中,卷积层能够提取图像的边缘、线条、角等低级特征,并通过多层网络迭代提取更复杂的特征。

二、卷积的具体过程

1.运算过程

        在深度学习中,图像卷积的运算公式主要涉及到输入图像、卷积核(滤波器)、输出特征图之间的尺寸关系以及卷积核的参数量计算。如下:

        Input表示输入的特征图,数字为像素点的值,其中黄色的部分表示卷积核的关注区域。kernel表示了一个尺寸为 3×3 的卷积核,其中绿色部分表示卷积核的权重。output表示经过卷积运算后得到的输出结果,其黄色区域表示的就是卷积的运算结构。

        Output = 2 ∗ −1 + 1 ∗ 0 + 0 ∗ 1 + 9 ∗ −1 &

猜你喜欢

转载自blog.csdn.net/m0_71212744/article/details/140546528