区分caffe中train.prototxt,solver.prototxt,deploy.prototxt等文件(2)

1. train_val.prototxt 

首先,train_val.prototxt文件是网络配置文件。该文件是在训练的时候用的。

2.deploy.prototxt

该文件是在测试时使用的文件

1、########## data层 ##########

在train_val.prototxt文件中,开头要加入一下训练设置文件和准备文件。

例如,transform_param中的mirror: true(开启镜像);

crop_size: ***(图像尺寸);

mean_file: ""(求解均值的文件);

data_param中的source:""(处理过得数据训练集文件);

batch_size: ***(训练图片每批次输入图片的数量);

扫描二维码关注公众号,回复: 2129968 查看本文章

backend: LMDB(数据格式设置)。

训练的时候还有一个测试的设置,测试和训练模式的设置通过一个include{phase: TEST/TRAIN}来设置。接下来就是要设置TEST模块内容。然后其他设置跟上面一样,里面有个batch_size可以调小一点,因为测试的话不需要特别多的图片数量。

以上内容在delpoy里面表现出来的只有一个数据层的设置,主需要设置name、type、top、input_param这些即可。

name: "CaffeNet"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
}
name: "CaffeNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
 }
data_param {
source: "examples/imagenet/ilsvrc12_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
 }
data_param {
source: "examples/imagenet/ilsvrc12_val_lmdb"
batch_size: 50
backend: LMDB
}
}

2、第一个卷积层的设置,train_val.prototxt文件中多了param(反向传播学习率的设置),这里需要设置两个param一个时weight的学习率,一个时bias的学习率,其中一般bias的学习率是weight学习率的两倍。然后就是设置convolution_param,但是在train_val里面需要有对weight_filler的初始化和对bias_filler的初始化。

deploy里面没有初始化。

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
  }
}

3、激活函数。这一块由于没有初始化,所以两个文件都是一样的。

layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}

4、池化层,由于池化就是降低分辨率,所以这两边是一样的,只需要设置kernel_size,stride,pool即可。无需参数的初始化。

ayer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

5、LRN层,该层的全称是Local Response Normalization(局部响应值归一化),该层的作用就是对局部输入进行一个归一化操作,不过现在有论文表明,这一层加不加对结果影响不是很大。但这一层的定义都是相同的。

layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

6、"conv2"、"relu2"、"pool2"、"LRN2"这样的循环,具体跟之前说的一样,train_val主要多的就是参数的初始化和学习率的设置。

layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "norm2"
  top: "conv3"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

7、fc6"层,该层是全连接层,这里train_val里面还是多两个param学习率的设置,和weight_filler、bias_filler的初始化设置,而两者共同的是有一个输出向量元素个数的设置:inner_product_param。

layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  inner_product_param {
    num_output: 4096
  }
}

8、Dropout层,该层的目的就是为了防止模型过拟合。这其中有一个dropout_ration的设置一般为0.5即可。

layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}

9、Accuracy,这个层是用来计算网络输出相对目标值的准确率,它实际上并不是一个损失层,所以没有反传操作。但是在caffe官网中,它在损失层这一部分。所以在deploy.prototxt文件中,这一层的定义是没有的。

deploy中把accuracy去掉即可。

10、train_val的最后一个层是"SoftmaxWithLoss"层,也是简单的定义了name,type,bottom,top就完了。而这一块的内容也不在deploy.prototxt文件中。

而在deploy.prototxt文件中直接定义了一个type:"Softmax"。
其中,这里面有一个区别在里头,就是为什么train_val里面的是SoftmaxWithLoss而deploy里面的是Softmax层(两个都是损失层,都没有任何参数):
这里面其实都是softmax回归的应用,只是在定义成Softmax时直接计算了概率室友forward部分,而在SoftmaxWithLoss部分时是还有backward的部分。所以这里就出现了区别,具体的区别可以看这两个文件的C++定义。

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc8"
  top: "prob"
}
通过对CaffeNet这两个文件的查看发现deploy.prototxt文件和train_val.prototxt文件之间的差异在很多层里面牵扯到训练部分的都会被删除,然后就是反向传播训练部分会被删除。















猜你喜欢

转载自blog.csdn.net/huima2017/article/details/80778294