人工智能—线性回归模型笔记

1、准备阶段

import pandas as pd
%matplotlib inline
data = pd.read_csv("boston_housing.csv")
data.head()

data.isnull().sum()

# 从原始数据中分离输入特征x和输出y
y = data['MEDV'].values
# 默认删除行,列需要加axis = 1
X = data.drop('MEDV', axis = 1)

2、数据处理

‘’‘
当数据量比较大时,可用train_test_split从训练集中分出一部分做校验集; 样本数目较少时,建议用交叉验证 在线性回归中,留一交叉验证有简便计算方式,无需显式交叉验证
’‘’
#将数据分割训练数据与测试数据
from sklearn.model_selection import train_test_split

# 随机采样20%的数据构建测试样本,其余作为训练样本
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.2)
X_train.shape

# 数据标准化
from sklearn.preprocessing import StandardScaler

# 分别初始化对特征和目标值的标准化器
ss_X = StandardScaler()
ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

#对y做标准化不是必须
#对y标准化的好处是不同问题的w差异不太大,同时正则参数的范围也有限
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1))

3、普通的线性模型(可用于数据量较小的情况)

# 线性回归
#class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化
lr = LinearRegression()

# 训练模型参数
lr.fit(X_train, y_train)

# 预测
y_test_pred_lr = lr.predict(X_test)
y_train_pred_lr = lr.predict(X_train)

columns = X.columns
# 看看各特征的权重系数,系数的绝对值大小可视为该特征的重要性
fs = pd.DataFrame({"columns":list(columns), "coef":list((lr.coef_.T))})
fs.sort_values(by=['coef'],ascending=False)

from sklearn.metrics import r2_score  #评价回归预测模型的性能
# 使用r2_score评价模型在测试集和训练集上的性能,并输出评估结果
#测试集
print('The r2 score of LinearRegression on test is',r2_score(y_test, y_test_pred_lr))
#训练集
print('The r2 score of LinearRegression on train is',r2_score(y_train, y_train_pred_lr))

#在训练集上观察预测残差的分布,看是否符合模型假设:噪声为0均值的高斯噪声
f, ax = plt.subplots(figsize=(7, 5)) 
f.tight_layout() 
ax.hist(y_train - y_train_pred_lr,bins=40, label='Residuals Linear', color='b', alpha=.5); 
ax.set_title("Histogram of Residuals") 
ax.legend(loc='best');

#还可以观察预测值与真值的散点图
plt.figure(figsize=(4, 3))
plt.scatter(y_train, y_train_pred_lr)
plt.plot([-3, 3], [-3, 3], '--k')   #数据已经标准化,3倍标准差即可
plt.axis('tight')
plt.xlabel('True price')
plt.ylabel('Predicted price')
plt.tight_layout()

4、线性模型,随机梯度下降优化模型参数

# 线性模型,随机梯度下降优化模型参数
# 随机梯度下降一般在大数据集上应用
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线
sgdr = SGDRegressor(max_iter=1000)

# 训练:参数估计
sgdr.fit(X_train, y_train)

# 预测
#sgdr_y_predict = sgdr.predict(X_test)

# 输出给参数的权重
sgdr.coef_

# 使用SGDRegressor模型自带的评估模块(评价准则为r2_score),并输出评估结果
print('The value of default measurement of SGDRegressor on test is',sgdr.score(X_test, y_test))
print('The value of default measurement of SGDRegressor on train is',sgdr.score(X_train, y_train))

5、岭回归/L2正则

#岭回归/L2正则
#class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, 
#                                  normalize=False, scoring=None, cv=None, gcv_mode=None, 
#                                  store_cv_values=False)

from sklearn.linear_model import  RidgeCV

#设置超参数(正则参数)范围
alphas = [ 0.01, 0.1, 1, 10,100]

#生成一个RidgeCV实例
ridge = RidgeCV(alphas=alphas, store_cv_values=True)  

#模型训练
ridge.fit(X_train, y_train)    

#预测
y_test_pred_ridge = ridge.predict(X_test)
y_train_pred_ridge = ridge.predict(X_train)


# 评估,使用r2_score评价模型在测试集和训练集上的性能
print('The r2 score of RidgeCV on test is', r2_score(y_test, y_test_pred_ridge))
print('The r2 score of RidgeCV on train is', r2_score(y_train, y_train_pred_ridge))

print('alpha is:', ridge.alpha_)

# 看看各特征的权重系数,系数的绝对值大小可视为该特征的重要性
fs = pd.DataFrame({"columns":list(columns), "coef_lr":list((lr.coef_.T)), "coef_ridge":list((ridge.coef_.T))})
fs.sort_values(by=['coef_lr'],ascending=False)

6、Lasso/L1正则

#### Lasso/L1正则
# class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, 
#                                    normalize=False, precompute=’auto’, max_iter=1000, 
#                                    tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1,
#                                    positive=False, random_state=None, selection=’cyclic’)
from sklearn.linear_model import LassoCV

#设置超参数搜索范围
#alphas = [ 0.01, 0.1, 1, 10,100]

#生成一个LassoCV实例
#lasso = LassoCV(alphas=alphas)  
lasso = LassoCV()  

#训练(内含CV)
lasso.fit(X_train, y_train)  

#测试
y_test_pred_lasso = lasso.predict(X_test)
y_train_pred_lasso = lasso.predict(X_train)


# 评估,使用r2_score评价模型在测试集和训练集上的性能
print('The r2 score of LassoCV on test is',r2_score(y_test, y_test_pred_lasso))
print('The r2 score of LassoCV on train is',r2_score(y_train, y_train_pred_lasso))

#打印超参数        
print ('alpha is:', lasso.alpha_)

# 看看各特征的权重系数,系数的绝对值大小可视为该特征的重要性
fs = pd.DataFrame({"columns":list(columns), "coef_lr":list((lr.coef_.T)), "coef_ridge":list((ridge.coef_.T)), "coef_lasso":list((lasso.coef_.T))})
fs.sort_values(by=['coef_lr'],ascending=False)

猜你喜欢

转载自blog.csdn.net/evolution23/article/details/84964359