[论文笔记] 契约论与边缘计算

Blockchain and Computational Intelligence Inspired Incentive-Compatible Demand Response in Internet of Electric Vehicles

Abstract

  • ev作为基础设施,实现智慧城市的电力调度交易

  • 提到分布式但其实并不

  • propose a consortium blockchain-enabled secure energy trading framework for electric vehicles with moderate cost.

  • 这里区块链也只是组合而已

  • The contract optimization problem falls into the category of difference of convex programing, and is solved by using the iterative convex–concave procedure algorithm.

  • How to derive the probability distribution of the EV type by SoC estimation techniques.

    • Gaussian process regression

I. Introduction

A. Background and Motivation

  • smart energy management
    • 不协调、可再生能源时断时续
    • 为了供需平衡,建设的基础设施代价高昂
    • 另一种方法即将电动汽车视为基础设施,让其根据市场信息,决策是否、以何量充放电——IoEV-based DR.
  • 两大好处:
  1. 通信角度:无缝信息收集。
  2. 能量角度:ev可以作为备用能源库——energy local area networks, virtual power plant

IoEV-based DR面临的挑战:

  1. 缺少安全的能量交易机制——区块链
  2. 缺少incentive-compatible DR mechanism: range anxiety——契约论
  3. information asymmetric: the probability distribution of each type——机器学习GPR估计SoC
  • 区块链方面的研究:every transaction is recorded in a verifiable and permanent way.
    • 为了避免solve proof-of-work puzzles带来的计算压力,利用consortium blockchain
  • SoC estimation
    • physical circuit model
    • machine learning
    • the GPR scheme to obtain the probability distribution of the SoC based on current, voltage, and temperature measurements.

详见08074792(IEEE)

B. Contributions

基本依照challenges

  • use the take-it-or-leave contract as performance benchmarks

详见06342942(IEEE)


II. Consortium Blockchain-based Secure Energy Trading

A. System Model

  • two entities: EVs and LEAG
  • 两者所扮演的角色、调度过程中两者的互动
  • 从区块链的角度,看LEAG的三大组分

B. Implementation

  • 系统初始化:设定加密算法、ev的注册
  • leag设计contract,\((L_k, R_k)\),具体介绍
  • 交易与区块链的交互

III. Contracted-based Incentive-Compatible Demand Response for IoEV

A. EV Type Modeling

  • 假定是离散且有限的
  • Def 1.
  • 依据放电能力,确定type的表达式
  • type的概率分布的定义

B. Contract Formulation

下面就不梳理结构了,后面读文献每当读完一节就梳理下

扫描二维码关注公众号,回复: 7974421 查看本文章
  • 注意除了IC、IR之外,卖家也有一个约束
  • 对于ev,放电时是有额外cost的
  • Def 2. IR、IC、monotonicity constraints
    • The IC constraint ensures the self-revealing property of the contract
  • Lemma 1: reward是type的单调递增函数
  • Lemma 2: reward、workload(只是主张)、utility of ev都是type的单调递增函数

证明详见07110552(IEEE)

C. Optimal Contract Design under Information Asymmetry

1) Contract Feasibility

  • Theorem 1. Contract Feasibility

2) Problem Transformation

  • proof of Theorem 1.
    • 这一步主要是减少constraint的数目

3) Optimal Contract with Reduced Constraints

  • the objective function is concave.

    • but the IC constraints involve the difference of two concave functions

    • use the iterative convex–concave procedure algorithm

      Variations and extension of the convex–concave procedure

    • Theorem 2. Convergence

D. Optimal Contract Design without Information Asymmetry

What will happen?

  • Proposition 1. the payoff for any EV is zero.
  • Proposition 2. reward is fixed regardless of the type of EV

IV. Computational Intelligence-based SoC Estimation

  • type决定于三个参数
    • 未来行驶距离可以由历史行车轨迹习得
    • 电池最大电量是确定的
    • SoC要进行估计:it is difficult to directly measure the value of SoC because the energy is stored in a chemical form, and a battery system exhibits highly nonlinear features
  • the GPR-based SoC estimation method
    • the off-line training stage and the online estimation stage

V. Computational Complexity Analysis


VI. Simulation Results

  • the take-it-or-leave contract is a threshold-based contract
    • just one contract item, and individual whose type is lower than the threshold type will refuse to sign the contract.

some conclusions(partial):

  • 对各种theorem和proposition的验证
  • 信息不对称有利于社会福利最大化
    • LEAG剥削所得不能补偿ev的损失
  • SoC估计误差与优化目标函数值的关系

VII. Conclusions


猜你喜欢

转载自www.cnblogs.com/rainy-days/p/11929897.html