hash解决冲突

开放地址法:

1.线性探测法:ThreadLocalMap

       线性再散列法是形式最简单的处理冲突的方法。插入元素时,如果发生冲突,算法会简单的 从该槽位置向后循环遍历hash表,直到找到表中的下一个空槽,并将该元素放入该槽中(会导致相同hash值的元素挨在一起和其他hash值对应的槽被占用)。查找元素时,首先散列值所指向的槽,如果没有找到匹配,则继续 从该槽遍历hash表,直到:(1)找到相应的元素;(2)找到一个空槽,指示查找的元素不存在, (所以不能随便删除元素);(3)整个hash表遍历完毕(指示该元素不存在并且hash表是满的)

用线性探测法处理冲突,思路清晰,算法简单,但存在下列缺点:
① 处理溢出需另编程序。一般可另外设立一个溢出表,专门用来存放上述哈希表中放不下的记录。此溢出表最简单的结构是顺序表,查找方法可用顺序查找。
② 按上述算法建立起来的哈希表,删除工作非常困难。如果将此元素删除,查找的时会发现空槽,则会认为要找的元素不存在。只能标上已被删除的标记,否则,将会影响以后的查找。
③ 线性探测法很容易产生堆聚现象。所谓堆聚现象,就是存入哈希表的记录在表中连成一片。按照线性探测法处理冲突,如果生成哈希地址的连续序列愈长 ( 即不同关键字值的哈希地址相邻在一起愈长 ) ,则当新的记录加入该表时,与这个序列发生冲突的可能性愈大。因此,哈希地址的较长连续序列比较短连续序列生长得快,这就意味着,一旦出现堆聚 ( 伴随着冲突 ) ,就将引起进一步的堆聚。


2.线性补偿探测法
线性补偿探测法的基本思想是:将线性探测的步长从 1 改为 Q ,即将上述算法中的
hash = (hash + 1) % m 改为:hash = (hash + Q) % m = hash % m + Q % m,而且要求 Q 与 m 是互质的,以便能探测到哈希表中的所有单元。
【例】 PDP-11 小型计算机中的汇编程序所用的符合表,就采用此方法来解决冲突,所用表长 m = 1321 ,选用 Q = 25 。

3.伪随机探测
随机探测的基本思想是:将线性探测的步长从常数改为随机数,即令: hash = (hash + RN) % m ,其中 RN 是一个随机数。在实际程序中应预先用随机数发生器产生一个随机序列,将此序列作为依次探测的步长。这样就能使不同的关键字具有不同的探测次序, 从而可以避 免或减少堆聚。基于与线性探测法相同的理由,在线性补偿探测法和随机探测法中,删除一个记录后也要打上删除标记。

拉链法
拉链法  : hashmap

拉链法的优点
与开放定址法相比,拉链法有如下几个优点:
①拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
②由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
③开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
④在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。

拉链法的缺点
     拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。

再散列(双重散列,多重散列)
当发生冲突时,使用第二个、第三个、哈希函数计算地址,直到无冲突时。缺点:计算时间增加。

建立一个公共溢出区
假设哈希函数的值域为[0,m-1],则设向量HashTable[0..m-1]为基本表,另外设立存储空间向量OverTable[0..v]用以存储发生冲突的记录。



对于哈希算法的一个实例,用来理解什么是hash:

比如这里有一万首歌,给你一首新的歌X,要求你确认这首歌是否在那一万首歌之内。


无疑,将一万首歌一个一个比对非常慢。但如果存在一种方式,能将一万首歌的每首数据浓缩到一个数字(称为哈希码)中,于是得到一万个数字,那么用同样的算法计算新的歌X的编码,看看歌X的编码是否在之前那一万个数字中,就能知道歌X是否在那一万首歌中。


作为例子,如果要你组织那一万首歌,一个简单的哈希算法就是让歌曲所占硬盘的字节数作为哈希码。这样的话,你可以让一万首歌“按照大小排序”,然后遇到一首新的歌,只要看看新的歌的字节数是否和已有的一万首歌中的某一首的字节数相同,就知道新的歌是否在那一万首歌之内了。


当然这个简单的哈希算法很容易出现两者同样大小的歌曲,这就是发送了碰撞。而好的哈希算法发生碰撞的几率非常小。




猜你喜欢

转载自blog.csdn.net/u010365819/article/details/80298359