令人吃惊的模拟电路 - 详解电路设计中单点接地、多点接地、混合接地

        地线也是有阻抗的,电流流过地线时,会产生电压,此为噪声电压,而噪声电压则是影响系统稳定的干扰源之一,不可取。所以,要降低地线噪声的前提是降低地线的阻抗。

       众所周知,地线是电流返回源的通路。对于一个信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。

      许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。信号接地方式一般有三种:浮地、单点接地、多点接地 、混合接地。

       A 、浮地

目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。 缺点:容易出现静电积累引起强烈的静电放电。 折衷方案:接入泄放电阻。

       B、单点接地

      单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A点,这点电位是最稳定的。最大的好处就是没有地环路,相对简单,但是地线往往过长,导致地线阻抗过大。

        单点接地可以分为“串联接地”和“并联接地”两种方式。串联单点接地的方式简单,但是存在共同地线的原因,导致存在公共地线阻抗,如果此时串联在一起的是功率相差很大的电路,那么互相干扰就非常严重。并联单点接地的方式可以避免公共地线耦合的因素,但是每部分电路都需要引地线到接地点上,需要的地线就过多,不实用。

       所以,在实际应用时,可画PCB板以采用串联和并联混合的单点接地方式。在时,把互相不易干扰的电路放一层,把互相容易发生干扰的电路放不同层,再把不同层的地并联接地。如下图所示。

       工作频率低(<1MHz)的采用单点接地式

       缺点:不适宜用于高频场合。

单点接地在高频电路里面,因为地线长,地线的阻抗是永远避免不了的因素,所以并不适用,那怎么办呢?下面再介绍“多点接地”。

        C、多点接地

       工作频率高(>30MHz)的采用多点接地式(即在该电路系统中,用一块接地平板代替电路中每部分各自的地回路)。因为接地引线的感抗与频率和长度成正比,工作频率高时将增加共地阻抗,从而将增大共地阻抗产生的电磁干扰,所以要求地线的长度尽量短。采用多点接地时,尽量找最接近的低阻值接地面接地。高频率的数字电路就需要并联接地了,在这里一般通过地孔的方式可较为简单的处理。

        当电路工作频率较高时,想象一下高频信号在沿着地线传播时,所到之处影响周边电路会有多么严重,因此所有电路就要就近接到地上,地线要求最短,多点接地就产生了。

        多点接地,其目的是为了降低地线的阻抗,在高频(f 一定的条件下)电路中,要降低阻抗,主要从两个方面去考虑,一是减小地线电阻,二是减小地线感抗。

        方法如下:

        1,减小地线导体电阻,从电阻与横截面的关系公式中我们知道,要增加地线导通的横截面积。但是在高频环境中,存在一种高频电流的趋肤效应(也叫集肤效应),高频电流会在导体表面通过,所以单纯增大地线导体的横截面积往往作用不大。可以考虑在导体表面镀银,因为银的导电性较其他导电物质优秀,故而会降低导体电阻。

        2,减小地线的感抗,最好的方法就是增大地线的面积。

             在实际应用时,地线短,地面积大,抗干扰的效果就会更好。

       写到这里时,可能有人会问,如何才算是高频电路?参考杨继深教授的书籍《电磁兼容EMC技术》有提到“通常1MHZ以下算低频电路,可以采用单点接地,10MHZ以上算高频电路,可以采用多点接地的方式”,1MHZ和10MHZ时,如果最长地线不超过波长的1/20,可以单点接地,否则多点接地。

       假如电路中既有高频信号,又有低频信号,怎么办?混合接地会是个好选择!

       D、混合接地

       如图所示。

        通过图来分析:上图中的第一种结构,假定工作在低频电路中,根据容抗Zc = 1/2πfc可知,容抗在低频环境下很大,而高频环境下很小。那么地线在低频时是断开的,在受到高频干扰时接近导通。如此接法可以有效避开地线环路的干扰影响。

        上图中的第二种结构,假定工作在高频电路中,根据感抗Zl = 2πfl可知,感抗在低频环境下很小,而高频环境下很大。那么地线在低频时是类似导通的,在受到高频干扰时是断开。如此接法可以有效避开地环路电流的影响。

        如果不选择使用整个平面的作为公共的地线,比如模块本身有两个地线的时候,就需要进行对地平面进行分割,这往往与电源平面有相互作用。地之间的连接方法如下:

① 地间电路板普通走线连接:使用这种方法可以保证两个地线之间可靠的低阻抗导通,但仅限于中低频信号电路地之间的接法。

② 地间大电阻连接:大电阻的特点是一旦电阻两端出现压差,就会产生很弱的导通电流,把地线上电荷泄放掉之后,最终实现两端的压差为零。

③ 地间电容连接:电容的特性是直流截止和交流导通,应用于浮地系统中。

④ 地间磁珠连接:磁珠等同于一个随频率变化的电阻,它表现的是电阻特性。应用于快速小电流波动的弱信号的地与地之间。

⑤ 地间电感连接:电感具有抑制电路状态变化的特性,可以削峰填谷,通常应用于两个有较大电流波动的地与地之间。

⑥ 地间小电阻连接:小电阻增加了一个阻尼,阻碍地电流快速变化的过冲;在电流变化时候,使冲击电流上升沿变缓。

       2模拟地和数字地

       模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。

       3星型接地

"星型"接地的理论基础是电路中总有一个点是所有电压的参考点,称为"星型接地"点。我们可以通过一个形象的比喻更好地加以理解—多条导线从一个共同接地点呈辐射状扩展,类似一颗星。星型点并不一定在外表上类似一颗星—它可能是接地层上的一个点—但星型接地系统上的一个关键特性是:所有电压都是相对于接地网上的某个特定点测量的,而不是相对于一个不确定的"地"。

4屏蔽层如何接地

屏蔽电缆的屏蔽层、信号包地都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。

        综述,在实际应用中,电路根据工作环境采用合适的接地方式可以有效避开干扰信号,达到电路的最优效果。

https://www.eefocus.com/analog-power/418507  详解电路设计中的单点接地/多点接地/混合接地(来源:电子工程专辑)

http://www.elecfans.com/d/718242.html              信号接地的方式盘点(浮地/单点接地/多点接地)

Principles of Electrical Grounding   接地原则手册

https://download.csdn.net/download/qq_25144391/12228839

发布了132 篇原创文章 · 获赞 13 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/qq_25144391/article/details/89466491