第10章 树结构基础部分

10.1. 二叉树

  • 数组存储方式的分析优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低.
  • 链式存储方式的分析优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)
  • 树存储方式的分析能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。

10.1.1 顺序存储二叉树

  • 顺序存储二叉树的特点:

    1. 顺序二叉树通常只考虑完全二叉树
    2. 第n个元素的左子节点为 2 * n + 1
    3. 第n个元素的右子节点为 2 * n + 2
    4. 第n个元素的父节点为 (n-1) / 2
    5. n : 表示二叉树中的第几个元素(按0开始编号如图所示)
      在这里插入图片描述
public class ArrBinaryTreeDemo {

	public static void main(String[] args) {
		int[] arr = { 1, 2, 3, 4, 5, 6, 7 };
		//创建一个 ArrBinaryTree
		ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
		arrBinaryTree.preOrder(); // 1,2,4,5,3,6,7
	}

}

//编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历

class ArrBinaryTree {
	private int[] arr;//存储数据结点的数组

	public ArrBinaryTree(int[] arr) {
		this.arr = arr;
	}
	
	//重载preOrder
	public void preOrder() {
		this.preOrder(0);
	}
	
	//编写一个方法,完成顺序存储二叉树的前序遍历
	/**
	 * 
	 * @param index 数组的下标 
	 */
	public void preOrder(int index) {
		//如果数组为空,或者 arr.length = 0
		if(arr == null || arr.length == 0) {
			System.out.println("数组为空,不能按照二叉树的前序遍历");
		}
		//输出当前这个元素
		System.out.println(arr[index]); 
		//向左递归遍历
		if((index * 2 + 1) < arr.length) {
			preOrder(2 * index + 1 );
		}
		//向右递归遍历
		if((index * 2 + 2) < arr.length) {
			preOrder(2 * index + 2);
		}
	}
	
}

10.1.2. 线索化二叉树

  • 线索二叉树基本介绍
    1. n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
    2. 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
    3. 一个结点的前一个结点,称为前驱结点
    4. 一个结点的后一个结点,称为后继结点
  • 线索二叉树应用案例
    应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}
    在这里插入图片描述
    思路分析: 中序遍历的结果:{8, 3, 10, 1, 14, 6}
    说明: 当线索化二叉树后,Node节点的 属性 left 和 right ,有如下情况:
    left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的就是前驱节点.
    right指向的是右子树,也可能是指向后继节点,比如 ① 节点right 指向的是右子树,而⑩ 节点的right 指向的是后继节点.
import java.util.concurrent.SynchronousQueue;

public class ThreadedBinaryTreeDemo {

	public static void main(String[] args) {
		//测试一把中序线索二叉树的功能
		HeroNode root = new HeroNode(1, "tom");
		HeroNode node2 = new HeroNode(3, "jack");
		HeroNode node3 = new HeroNode(6, "smith");
		HeroNode node4 = new HeroNode(8, "mary");
		HeroNode node5 = new HeroNode(10, "king");
		HeroNode node6 = new HeroNode(14, "dim");
		
		//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
		root.setLeft(node2);
		root.setRight(node3);
		node2.setLeft(node4);
		node2.setRight(node5);
		node3.setLeft(node6);
		
		//测试中序线索化
		ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
		threadedBinaryTree.setRoot(root);
		threadedBinaryTree.threadedNodes();
		
		//测试: 以10号节点测试
		HeroNode leftNode = node5.getLeft();
		HeroNode rightNode = node5.getRight();
		System.out.println("10号结点的前驱结点是 ="  + leftNode); //3
		System.out.println("10号结点的后继结点是="  + rightNode); //1
		
		//当线索化二叉树后,能在使用原来的遍历方法
		//threadedBinaryTree.infixOrder();
		System.out.println("使用线索化的方式遍历 线索化二叉树");
		threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6
		
	}

}




//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
	private HeroNode root;
	
	//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
	//在递归进行线索化时,pre 总是保留前一个结点
	private HeroNode pre = null;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//重载一把threadedNodes方法
	public void threadedNodes() {
		this.threadedNodes(root);
	}
	
	//遍历线索化二叉树的方法
	public void threadedList() {
		//定义一个变量,存储当前遍历的结点,从root开始
		HeroNode node = root;
		while(node != null) {
			//循环的找到leftType == 1的结点,第一个找到就是8结点
			//后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
			//处理后的有效结点
			while(node.getLeftType() == 0) {
				node = node.getLeft();
			}
			
			//打印当前这个结点
			System.out.println(node);
			//如果当前结点的右指针指向的是后继结点,就一直输出
			while(node.getRightType() == 1) {
				//获取到当前结点的后继结点
				node = node.getRight();
				System.out.println(node);
			}
			//替换这个遍历的结点
			node = node.getRight();
			
		}
	}
	
	//编写对二叉树进行中序线索化的方法
	/**
	 * 
	 * @param node 就是当前需要线索化的结点
	 */
	public void threadedNodes(HeroNode node) {
		
		//如果node==null, 不能线索化
		if(node == null) {
			return;
		}
		
		//(一)先线索化左子树
		threadedNodes(node.getLeft());
		//(二)线索化当前结点[有难度]
		
		//处理当前结点的前驱结点
		//以8结点来理解
		//8结点的.left = null , 8结点的.leftType = 1
		if(node.getLeft() == null) {
			//让当前结点的左指针指向前驱结点 
			node.setLeft(pre); 
			//修改当前结点的左指针的类型,指向前驱结点
			node.setLeftType(1);
		}
		
		//处理后继结点
		if (pre != null && pre.getRight() == null) {
			//让前驱结点的右指针指向当前结点
			pre.setRight(node);
			//修改前驱结点的右指针类型
			pre.setRightType(1);
		}
		//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
		pre = node;
		
		//(三)在线索化右子树
		threadedNodes(node.getRight());
		
		
	}
	
	//删除结点
	public void delNode(int no) {
		if(root != null) {
			//如果只有一个root结点, 这里立即判断root是不是就是要删除结点
			if(root.getNo() == no) {
				root = null;
			} else {
				//递归删除
				root.delNode(no);
			}
		}else{
			System.out.println("空树,不能删除~");
		}
	}
	//前序遍历
	public void preOrder() {
		if(this.root != null) {
			this.root.preOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.root != null) {
			this.root.infixOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.root != null) {
			this.root.postOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//前序遍历
	public HeroNode preOrderSearch(int no) {
		if(root != null) {
			return root.preOrderSearch(no);
		} else {
			return null;
		}
	}
	//中序遍历
	public HeroNode infixOrderSearch(int no) {
		if(root != null) {
			return root.infixOrderSearch(no);
		}else {
			return null;
		}
	}
	//后序遍历
	public HeroNode postOrderSearch(int no) {
		if(root != null) {
			return this.root.postOrderSearch(no);
		}else {
			return null;
		}
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	//说明
	//1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
	//2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
	private int leftType;
	private int rightType;
	
	
	
	public int getLeftType() {
		return leftType;
	}
	public void setLeftType(int leftType) {
		this.leftType = leftType;
	}
	public int getRightType() {
		return rightType;
	}
	public void setRightType(int rightType) {
		this.rightType = rightType;
	}
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
	
	//递归删除结点
	//1.如果删除的节点是叶子节点,则删除该节点
	//2.如果删除的节点是非叶子节点,则删除该子树
	public void delNode(int no) {
		
		//思路
		/*
		 * 	1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
			2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
			3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
			4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
			5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.

		 */
		//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
		if(this.left != null && this.left.no == no) {
			this.left = null;
			return;
		}
		//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
		if(this.right != null && this.right.no == no) {
			this.right = null;
			return;
		}
		//4.我们就需要向左子树进行递归删除
		if(this.left != null) {
			this.left.delNode(no);
		}
		//5.则应当向右子树进行递归删除
		if(this.right != null) {
			this.right.delNode(no);
		}
	}
	
	//编写前序遍历的方法
	public void preOrder() {
		System.out.println(this); //先输出父结点
		//递归向左子树前序遍历
		if(this.left != null) {
			this.left.preOrder();
		}
		//递归向右子树前序遍历
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	//中序遍历
	public void infixOrder() {
		
		//递归向左子树中序遍历
		if(this.left != null) {
			this.left.infixOrder();
		}
		//输出父结点
		System.out.println(this);
		//递归向右子树中序遍历
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.left != null) {
			this.left.postOrder();
		}
		if(this.right != null) {
			this.right.postOrder();
		}
		System.out.println(this);
	}
	
	//前序遍历查找
	/**
	 * 
	 * @param no 查找no
	 * @return 如果找到就返回该Node ,如果没有找到返回 null
	 */
	public HeroNode preOrderSearch(int no) {
		System.out.println("进入前序遍历");
		//比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
		//2.如果左递归前序查找,找到结点,则返回
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.preOrderSearch(no);
		}
		if(resNode != null) {//说明我们左子树找到
			return resNode;
		}
		//1.左递归前序查找,找到结点,则返回,否继续判断,
		//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
		if(this.right != null) {
			resNode = this.right.preOrderSearch(no);
		}
		return resNode;
	}
	
	//中序遍历查找
	public HeroNode infixOrderSearch(int no) {
		//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.infixOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入中序查找");
		//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
		if(this.no == no) {
			return this;
		}
		//否则继续进行右递归的中序查找
		if(this.right != null) {
			resNode = this.right.infixOrderSearch(no);
		}
		return resNode;
		
	}
	
	//后序遍历查找
	public HeroNode postOrderSearch(int no) {
		
		//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.postOrderSearch(no);
		}
		if(resNode != null) {//说明在左子树找到
			return resNode;
		}
		
		//如果左子树没有找到,则向右子树递归进行后序遍历查找
		if(this.right != null) {
			resNode = this.right.postOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入后序查找");
		//如果左右子树都没有找到,就比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		return resNode;
	}
	
}

10.2. 堆排序

  • 堆排序基本介绍

    1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
    2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
    3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
    4. 大顶堆举例说明
      在这里插入图片描述
      我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
      在这里插入图片描述
      大顶堆特点:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2] // i 对应第几个节点,i从0开始编号
    5. 小顶堆举例说明
      在这里插入图片描述
      小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2] // i 对应第几个节点,i从0开始编号
      一般升序采用大顶堆,降序采用小顶堆
  • 堆排序基本思想

    1. 将待排序序列构造成一个大顶堆
    2. 此时,整个序列的最大值就是堆顶的根节点。
    3. 将其与末尾元素进行交换,此时末尾就为最大值。
    4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
package com.atguigu.tree;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class HeapSort {

	public static void main(String[] args) {
		//要求将数组进行升序排序
		//int arr[] = {4, 6, 8, 5, 9};
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		heapSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		//System.out.println("排序后=" + Arrays.toString(arr));
	}

	//编写一个堆排序的方法
	public static void heapSort(int arr[]) {
		int temp = 0;		
		//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for(int i = arr.length / 2 -1; i >=0; i--) {
			adjustHeap(arr, i, arr.length);
		}
		
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
		for(int j = arr.length-1;j >0; j--) {
			//交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j); 
		}
		
		//System.out.println("数组=" + Arrays.toString(arr)); 
		
	}
	
	//将一个数组(二叉树), 调整成一个大顶堆
	/**
	 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
	 * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
	 * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
	 * @param arr 待调整的数组
	 * @param i 表示非叶子结点在数组中索引
	 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
	 */
	public  static void adjustHeap(int arr[], int i, int lenght) {
		
		int temp = arr[i];//先取出当前元素的值,保存在临时变量
		//开始调整
		//说明
		//1. k = i * 2 + 1 k 是 i结点的左子结点
		for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
			if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
				k++; // k 指向右子结点
			}
			if(arr[k] > temp) { //如果子结点大于父结点
				arr[i] = arr[k]; //把较大的值赋给当前结点
				i = k; //!!! i 指向 k,继续循环比较
			} else {
				break;//!
			}
		}
		//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
		arr[i] = temp;//将temp值放到调整后的位置
	}
	
}

10.3. 赫夫曼树

  • 基本介绍
    1. 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。
    2. 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
    3. 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
    4. WPL最小的就是赫夫曼树
  • 构成赫夫曼树的步骤:
    1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
    2. 取出根节点权值最小的两颗二叉树
    3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
    4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {

	public static void main(String[] args) {
		int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试一把
		preOrder(root); //
		
	}
	
	//编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else{
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	/**
	 * 
	 * @param arr 需要创建成哈夫曼树的数组
	 * @return 创建好后的赫夫曼树的root结点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		
		//我们处理的过程是一个循环的过程
		
		
		while(nodes.size() > 1) {
		
			//排序 从小到大 
			Collections.sort(nodes);
			
			System.out.println("nodes =" + nodes);
			
			//取出根节点权值最小的两颗二叉树 
			//(1) 取出权值最小的结点(二叉树)
			Node leftNode = nodes.get(0);
			//(2) 取出权值第二小的结点(二叉树)
			Node rightNode = nodes.get(1);
			
			//(3)构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//(4)从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//(5)将parent加入到nodes
			nodes.add(parent);
		}
		
		//返回哈夫曼树的root结点
		return nodes.get(0);
		
	}
}

// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
	int value; // 结点权值
	char c; //字符
	Node left; // 指向左子结点
	Node right; // 指向右子结点

	//写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	
	public Node(int value) {
		this.value = value;
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	@Override
	public int compareTo(Node o) {
		// TODO Auto-generated method stub
		// 表示从小到大排序
		return this.value - o.value;
	}

}

10.4. 赫夫曼编码

  • 原理剖析:

    1. i like like like java do you like a java // 共40个字符(包括空格)
    2. d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数,按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值.(图后)
      在这里插入图片描述
    3. 生成赫夫曼树对应的赫夫曼编码 , 如下表:=01 a=100 d=11000 u=11001 e=1110 v=11011 i=101 y=11010 j=0010 k=1111 l=000 o=0011
    4. 使用赫夫曼编码来生成赫夫曼编码数据 ,即按照上面的赫夫曼编码,将"i like like like java do you like a java" 字符串生成对应的编码数据, 形式如下.1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class HuffmanCode {

	public static void main(String[] args) {
		
		//测试压缩文件
//		String srcFile = "d://Uninstall.xml";
//		String dstFile = "d://Uninstall.zip";
//		
//		zipFile(srcFile, dstFile);
//		System.out.println("压缩文件ok~~");
		
		
		//测试解压文件
		String zipFile = "d://Uninstall.zip";
		String dstFile = "d://Uninstall2.xml";
		unZipFile(zipFile, dstFile);
		System.out.println("解压成功!");
		
	}
	
	//编写一个方法,完成对压缩文件的解压
	/**
	 * 
	 * @param zipFile 准备解压的文件
	 * @param dstFile 将文件解压到哪个路径
	 */
	public static void unZipFile(String zipFile, String dstFile) {
		
		//定义文件输入流
		InputStream is = null;
		//定义一个对象输入流
		ObjectInputStream ois = null;
		//定义文件的输出流
		OutputStream os = null;
		try {
			//创建文件输入流
			is = new FileInputStream(zipFile);
			//创建一个和  is关联的对象输入流
			ois = new ObjectInputStream(is);
			//读取byte数组  huffmanBytes
			byte[] huffmanBytes = (byte[])ois.readObject();
			//读取赫夫曼编码表
			Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();
			
			//解码
			byte[] bytes = decode(huffmanCodes, huffmanBytes);
			//将bytes 数组写入到目标文件
			os = new FileOutputStream(dstFile);
			//写数据到 dstFile 文件
			os.write(bytes);
		} catch (Exception e) {
			// TODO: handle exception
			System.out.println(e.getMessage());
		} finally {
			
			try {
				os.close();
				ois.close();
				is.close();
			} catch (Exception e2) {
				// TODO: handle exception
				System.out.println(e2.getMessage());
			}
			
		}
	}
	
	//编写方法,将一个文件进行压缩
	/**
	 * 
	 * @param srcFile 你传入的希望压缩的文件的全路径
	 * @param dstFile 我们压缩后将压缩文件放到哪个目录
	 */
	public static void zipFile(String srcFile, String dstFile) {
		
		//创建输出流
		OutputStream os = null;
		ObjectOutputStream oos = null;
		//创建文件的输入流
		FileInputStream is = null;
		try {
			//创建文件的输入流
			is = new FileInputStream(srcFile);
			//创建一个和源文件大小一样的byte[]
			byte[] b = new byte[is.available()];
			//读取文件
			is.read(b);
			//直接对源文件压缩
			byte[] huffmanBytes = huffmanZip(b);
			//创建文件的输出流, 存放压缩文件
			os = new FileOutputStream(dstFile);
			//创建一个和文件输出流关联的ObjectOutputStream
			oos = new ObjectOutputStream(os);
			//把 赫夫曼编码后的字节数组写入压缩文件
			oos.writeObject(huffmanBytes); //我们是把
			//这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用
			//注意一定要把赫夫曼编码 写入压缩文件
			oos.writeObject(huffmanCodes);
			
			
		}catch (Exception e) {
			// TODO: handle exception
			System.out.println(e.getMessage());
		}finally {
			try {
				is.close();
				oos.close();
				os.close();
			}catch (Exception e) {
				// TODO: handle exception
				System.out.println(e.getMessage());
			}
		}
		
	}
	
	//完成数据的解压
	//思路
	//1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
	//   重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."
	//2.  赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码  =》 "i like like like java do you like a java"
	
	
	//编写一个方法,完成对压缩数据的解码
	/**
	 * 
	 * @param huffmanCodes 赫夫曼编码表 map
	 * @param huffmanBytes 赫夫曼编码得到的字节数组
	 * @return 就是原来的字符串对应的数组
	 */
	private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {
		
		//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...
		StringBuilder stringBuilder = new StringBuilder();
		//将byte数组转成二进制的字符串
		for(int i = 0; i < huffmanBytes.length; i++) {
			byte b = huffmanBytes[i];
			//判断是不是最后一个字节
			boolean flag = (i == huffmanBytes.length - 1);
			stringBuilder.append(byteToBitString(!flag, b));
		}
		//把字符串安装指定的赫夫曼编码进行解码
		//把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
		Map<String, Byte>  map = new HashMap<String,Byte>();
		for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {
			map.put(entry.getValue(), entry.getKey());
		}
		
		//创建要给集合,存放byte
		List<Byte> list = new ArrayList<>();
		//i 可以理解成就是索引,扫描 stringBuilder 
		for(int  i = 0; i < stringBuilder.length(); ) {
			int count = 1; // 小的计数器
			boolean flag = true;
			Byte b = null;
			
			while(flag) {
				//1010100010111...
				//递增的取出 key 1 
				String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符
				b = map.get(key);
				if(b == null) {//说明没有匹配到
					count++;
				}else {
					//匹配到
					flag = false;
				}
			}
			list.add(b);
			i += count;//i 直接移动到 count	
		}
		//当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"
		//把list 中的数据放入到byte[] 并返回
		byte b[] = new byte[list.size()];
		for(int i = 0;i < b.length; i++) {
			b[i] = list.get(i);
		}
		return b;
		
	}
 	
	/**
	 * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
	 * @param b 传入的 byte
	 * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
	 * @return 是该b 对应的二进制的字符串,(注意是按补码返回)
	 */
	private static String byteToBitString(boolean flag, byte b) {
		//使用变量保存 b
		int temp = b; //将 b 转成 int
		//如果是正数我们还存在补高位
		if(flag) {
			temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001
		}
		String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
		if(flag) {
			return str.substring(str.length() - 8);
		} else {
			return str;
		}
	}
	
	//使用一个方法,将前面的方法封装起来,便于我们的调用.
	/**
	 * 
	 * @param bytes 原始的字符串对应的字节数组
	 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
	 */
	private static byte[] huffmanZip(byte[] bytes) {
		List<Node> nodes = getNodes(bytes);
		//根据 nodes 创建的赫夫曼树
		Node huffmanTreeRoot = createHuffmanTree(nodes);
		//对应的赫夫曼编码(根据 赫夫曼树)
		Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
		//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
		byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
		return huffmanCodeBytes;
	}
	
	
	//编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
	/**
	 * 
	 * @param bytes 这时原始的字符串对应的 byte[]
	 * @param huffmanCodes 生成的赫夫曼编码map
	 * @return 返回赫夫曼编码处理后的 byte[] 
	 * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
	 * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
	 * => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes
	 * huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
	 * huffmanCodeBytes[1] = -88
	 */
	private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
		
		//1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串
		StringBuilder stringBuilder = new StringBuilder();
		//遍历bytes 数组 
		for(byte b: bytes) {
			stringBuilder.append(huffmanCodes.get(b));
		}
		
		//System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());
		
		//将 "1010100010111111110..." 转成 byte[]
		
		//统计返回  byte[] huffmanCodeBytes 长度
		//一句话 int len = (stringBuilder.length() + 7) / 8;
		int len;
		if(stringBuilder.length() % 8 == 0) {
			len = stringBuilder.length() / 8;
		} else {
			len = stringBuilder.length() / 8 + 1;
		}
		//创建 存储压缩后的 byte数组
		byte[] huffmanCodeBytes = new byte[len];
		int index = 0;//记录是第几个byte
		for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8
				String strByte;
				if(i+8 > stringBuilder.length()) {//不够8位
					strByte = stringBuilder.substring(i);
				}else{
					strByte = stringBuilder.substring(i, i + 8);
				}	
				//将strByte 转成一个byte,放入到 huffmanCodeBytes
				huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);
				index++;
		}
		return huffmanCodeBytes;
	}
	
	//生成赫夫曼树对应的赫夫曼编码
	//思路:
	//1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
	//   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
	static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();
	//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
	static StringBuilder stringBuilder = new StringBuilder();
	
	
	//为了调用方便,我们重载 getCodes
	private static Map<Byte, String> getCodes(Node root) {
		if(root == null) {
			return null;
		}
		//处理root的左子树
		getCodes(root.left, "0", stringBuilder);
		//处理root的右子树
		getCodes(root.right, "1", stringBuilder);
		return huffmanCodes;
	}
	
	/**
	 * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
	 * @param node  传入结点
	 * @param code  路径: 左子结点是 0, 右子结点 1
	 * @param stringBuilder 用于拼接路径
	 */
	private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
		StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
		//将code 加入到 stringBuilder2
		stringBuilder2.append(code);
		if(node != null) { //如果node == null不处理
			//判断当前node 是叶子结点还是非叶子结点
			if(node.data == null) { //非叶子结点
				//递归处理
				//向左递归
				getCodes(node.left, "0", stringBuilder2);
				//向右递归
				getCodes(node.right, "1", stringBuilder2);
			} else { //说明是一个叶子结点
				//就表示找到某个叶子结点的最后
				huffmanCodes.put(node.data, stringBuilder2.toString());
			}
		}
	}
	
	//前序遍历的方法
	private static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else {
			System.out.println("赫夫曼树为空");
		}
	}
	
	/**
	 * 
	 * @param bytes 接收字节数组
	 * @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
	 */
	private static List<Node> getNodes(byte[] bytes) {
		
		//1创建一个ArrayList
		ArrayList<Node> nodes = new ArrayList<Node>();
		
		//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
		Map<Byte, Integer> counts = new HashMap<>();
		for (byte b : bytes) {
			Integer count = counts.get(b);
			if (count == null) { // Map还没有这个字符数据,第一次
				counts.put(b, 1);
			} else {
				counts.put(b, count + 1);
			}
		}
		
		//把每一个键值对转成一个Node 对象,并加入到nodes集合
		//遍历map
		for(Map.Entry<Byte, Integer> entry: counts.entrySet()) {
			nodes.add(new Node(entry.getKey(), entry.getValue()));
		}
		return nodes;
		
	}
	
	//可以通过List 创建对应的赫夫曼树
	private static Node createHuffmanTree(List<Node> nodes) {
		
		while(nodes.size() > 1) {
			//排序, 从小到大
			Collections.sort(nodes);
			//取出第一颗最小的二叉树
			Node leftNode = nodes.get(0);
			//取出第二颗最小的二叉树
			Node rightNode = nodes.get(1);
			//创建一颗新的二叉树,它的根节点 没有data, 只有权值
			Node parent = new Node(null, leftNode.weight + rightNode.weight);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//将已经处理的两颗二叉树从nodes删除
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//将新的二叉树,加入到nodes
			nodes.add(parent);
			
		}
		//nodes 最后的结点,就是赫夫曼树的根结点
		return nodes.get(0);
		
	}
	

}



//创建Node ,待数据和权值
class Node implements Comparable<Node>  {
	Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32
	int weight; //权值, 表示字符出现的次数
	Node left;//
	Node right;
	public Node(Byte data, int weight) {
		
		this.data = data;
		this.weight = weight;
	}
	@Override
	public int compareTo(Node o) {
		// 从小到大排序
		return this.weight - o.weight;
	}
	
	public String toString() {
		return "Node [data = " + data + " weight=" + weight + "]";
	}
	
	//前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
}

10.5. 二叉排序树

  • 二叉排序树的删除
    二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
    在这里插入图片描述在这里插入图片描述
public class BinarySortTreeDemo {

	public static void main(String[] args) {
		int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
		BinarySortTree binarySortTree = new BinarySortTree();
		//循环的添加结点到二叉排序树
		for(int i = 0; i< arr.length; i++) {
			binarySortTree.add(new Node(arr[i]));
		}
		
		//中序遍历二叉排序树
		System.out.println("中序遍历二叉排序树~");
		binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
		
		//测试一下删除叶子结点
	    
	   
	    binarySortTree.delNode(12);
	   
	 
	    binarySortTree.delNode(5);
	    binarySortTree.delNode(10);
	    binarySortTree.delNode(2);
	    binarySortTree.delNode(3);
		   
	    binarySortTree.delNode(9);
	    binarySortTree.delNode(1);
	    binarySortTree.delNode(7);
	    
		
		System.out.println("root=" + binarySortTree.getRoot());
		
		
		System.out.println("删除结点后");
		binarySortTree.infixOrder();
	}

}

//创建二叉排序树
class BinarySortTree {
	private Node root;

	public Node getRoot() {
		return root;
	}

	//查找要删除的结点
	public Node search(int value) {
		if(root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}
	
	//查找父结点
	public Node searchParent(int value) {
		if(root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}
	
	//编写方法: 
	//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
	//2. 删除node 为根结点的二叉排序树的最小结点
	/**
	 * 
	 * @param node 传入的结点(当做二叉排序树的根结点)
	 * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
	 */
	public int delRightTreeMin(Node node) {
		Node target = node;
		//循环的查找左子节点,就会找到最小值
		while(target.left != null) {
			target = target.left;
		}
		//这时 target就指向了最小结点
		//删除最小结点
		delNode(target.value);
		return target.value;
	}
	
	
	//删除结点
	public void delNode(int value) {
		if(root == null) {
			return;
		}else {
			//1.需求先去找到要删除的结点  targetNode
			Node targetNode = search(value);
			//如果没有找到要删除的结点
			if(targetNode == null) {
				return;
			}
			//如果我们发现当前这颗二叉排序树只有一个结点
			if(root.left == null && root.right == null) {
				root = null;
				return;
			}
			
			//去找到targetNode的父结点
			Node parent = searchParent(value);
			//如果要删除的结点是叶子结点
			if(targetNode.left == null && targetNode.right == null) {
				//判断targetNode 是父结点的左子结点,还是右子结点
				if(parent.left != null && parent.left.value == value) { //是左子结点
					parent.left = null;
				} else if (parent.right != null && parent.right.value == value) {//是由子结点
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;
				
				
			} else { // 删除只有一颗子树的结点
				//如果要删除的结点有左子结点 
				if(targetNode.left != null) {
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.left;
						} else { //  targetNode 是 parent 的右子结点
							parent.right = targetNode.left;
						} 
					} else {
						root = targetNode.left;
					}
				} else { //如果要删除的结点有右子结点 
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.right;
						} else { //如果 targetNode 是 parent 的右子结点
							parent.right = targetNode.right;
						}
					} else {
						root = targetNode.right;
					}
				}
				
			}
			
		}
	}
	
	//添加结点的方法
	public void add(Node node) {
		if(root == null) {
			root = node;//如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}
	//中序遍历
	public void infixOrder() {
		if(root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}

//创建Node结点
class Node {
	int value;
	Node left;
	Node right;
	public Node(int value) {
		
		this.value = value;
	}
	
	
	//查找要删除的结点
	/**
	 * 
	 * @param value 希望删除的结点的值
	 * @return 如果找到返回该结点,否则返回null
	 */
	public Node search(int value) {
		if(value == this.value) { //找到就是该结点
			return this;
		} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
			//如果左子结点为空
			if(this.left  == null) {
				return null;
			}
			return this.left.search(value);
		} else { //如果查找的值不小于当前结点,向右子树递归查找
			if(this.right == null) {
				return null;
			}
			return this.right.search(value);
		}
		
	}
	//查找要删除结点的父结点
	/**
	 * 
	 * @param value 要找到的结点的值
	 * @return 返回的是要删除的结点的父结点,如果没有就返回null
	 */
	public Node searchParent(int value) {
		//如果当前结点就是要删除的结点的父结点,就返回
		if((this.left != null && this.left.value == value) || 
				(this.right != null && this.right.value == value)) {
			return this;
		} else {
			//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
			if(value < this.value && this.left != null) {
				return this.left.searchParent(value); //向左子树递归查找
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value); //向右子树递归查找
			} else {
				return null; // 没有找到父结点
			}
		}
		
	}
	
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}


	//添加结点的方法
	//递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if(node == null) {
			return;
		}
		
		//判断传入的结点的值,和当前子树的根结点的值关系
		if(node.value < this.value) {
			//如果当前结点左子结点为null
			if(this.left == null) {
				this.left = node;
			} else {
				//递归的向左子树添加
				this.left.add(node);
			}
		} else { //添加的结点的值大于 当前结点的值
			if(this.right == null) {
				this.right = node;
			} else {
				//递归的向右子树添加
				this.right.add(node);
			}
			
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	
}

10.5. 平衡二叉树(AVL树)

  • 左旋
    在这里插入图片描述

  • 右旋
    在这里插入图片描述

  • 双旋
    在这里插入图片描述

public class AVLTreeDemo {

	public static void main(String[] args) {
		//int[] arr = {4,3,6,5,7,8};
		//int[] arr = { 10, 12, 8, 9, 7, 6 };
		int[] arr = { 10, 11, 7, 6, 8, 9 };  
		//创建一个 AVLTree对象
		AVLTree avlTree = new AVLTree();
		//添加结点
		for(int i=0; i < arr.length; i++) {
			avlTree.add(new Node(arr[i]));
		}
		
		//遍历
		System.out.println("中序遍历");
		avlTree.infixOrder();
		
		System.out.println("在平衡处理~~");
		System.out.println("树的高度=" + avlTree.getRoot().height()); //3
		System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
		System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
		System.out.println("当前的根结点=" + avlTree.getRoot());//8
		
		
	}

}

// 创建AVLTree
class AVLTree {
	private Node root;

	public Node getRoot() {
		return root;
	}

	// 查找要删除的结点
	public Node search(int value) {
		if (root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}

	// 查找父结点
	public Node searchParent(int value) {
		if (root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}

	// 编写方法:
	// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值
	// 2. 删除node 为根结点的二叉排序树的最小结点
	/**
	 * 
	 * @param node
	 *            传入的结点(当做二叉排序树的根结点)
	 * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
	 */
	public int delRightTreeMin(Node node) {
		Node target = node;
		// 循环的查找左子节点,就会找到最小值
		while (target.left != null) {
			target = target.left;
		}
		// 这时 target就指向了最小结点
		// 删除最小结点
		delNode(target.value);
		return target.value;
	}

	// 删除结点
	public void delNode(int value) {
		if (root == null) {
			return;
		} else {
			// 1.需求先去找到要删除的结点 targetNode
			Node targetNode = search(value);
			// 如果没有找到要删除的结点
			if (targetNode == null) {
				return;
			}
			// 如果我们发现当前这颗二叉排序树只有一个结点
			if (root.left == null && root.right == null) {
				root = null;
				return;
			}

			// 去找到targetNode的父结点
			Node parent = searchParent(value);
			// 如果要删除的结点是叶子结点
			if (targetNode.left == null && targetNode.right == null) {
				// 判断targetNode 是父结点的左子结点,还是右子结点
				if (parent.left != null && parent.left.value == value) { // 是左子结点
					parent.left = null;
				} else if (parent.right != null && parent.right.value == value) {// 是由子结点
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;

			} else { // 删除只有一颗子树的结点
				// 如果要删除的结点有左子结点
				if (targetNode.left != null) {
					if (parent != null) {
						// 如果 targetNode 是 parent 的左子结点
						if (parent.left.value == value) {
							parent.left = targetNode.left;
						} else { // targetNode 是 parent 的右子结点
							parent.right = targetNode.left;
						}
					} else {
						root = targetNode.left;
					}
				} else { // 如果要删除的结点有右子结点
					if (parent != null) {
						// 如果 targetNode 是 parent 的左子结点
						if (parent.left.value == value) {
							parent.left = targetNode.right;
						} else { // 如果 targetNode 是 parent 的右子结点
							parent.right = targetNode.right;
						}
					} else {
						root = targetNode.right;
					}
				}

			}

		}
	}

	// 添加结点的方法
	public void add(Node node) {
		if (root == null) {
			root = node;// 如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}

	// 中序遍历
	public void infixOrder() {
		if (root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}

// 创建Node结点
class Node {
	int value;
	Node left;
	Node right;

	public Node(int value) {

		this.value = value;
	}

	// 返回左子树的高度
	public int leftHeight() {
		if (left == null) {
			return 0;
		}
		return left.height();
	}

	// 返回右子树的高度
	public int rightHeight() {
		if (right == null) {
			return 0;
		}
		return right.height();
	}

	// 返回 以该结点为根结点的树的高度
	public int height() {
		return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
	}
	
	//左旋转方法
	private void leftRotate() {
		
		//创建新的结点,以当前根结点的值
		Node newNode = new Node(value);
		//把新的结点的左子树设置成当前结点的左子树
		newNode.left = left;
		//把新的结点的右子树设置成带你过去结点的右子树的左子树
		newNode.right = right.left;
		//把当前结点的值替换成右子结点的值
		value = right.value;
		//把当前结点的右子树设置成当前结点右子树的右子树
		right = right.right;
		//把当前结点的左子树(左子结点)设置成新的结点
		left = newNode;
		
		
	}
	
	//右旋转
	private void rightRotate() {
		Node newNode = new Node(value);
		newNode.right = right;
		newNode.left = left.right;
		value = left.value;
		left = left.left;
		right = newNode;
	}

	// 查找要删除的结点
	/**
	 * 
	 * @param value
	 *            希望删除的结点的值
	 * @return 如果找到返回该结点,否则返回null
	 */
	public Node search(int value) {
		if (value == this.value) { // 找到就是该结点
			return this;
		} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
			// 如果左子结点为空
			if (this.left == null) {
				return null;
			}
			return this.left.search(value);
		} else { // 如果查找的值不小于当前结点,向右子树递归查找
			if (this.right == null) {
				return null;
			}
			return this.right.search(value);
		}

	}

	// 查找要删除结点的父结点
	/**
	 * 
	 * @param value
	 *            要找到的结点的值
	 * @return 返回的是要删除的结点的父结点,如果没有就返回null
	 */
	public Node searchParent(int value) {
		// 如果当前结点就是要删除的结点的父结点,就返回
		if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
			return this;
		} else {
			// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
			if (value < this.value && this.left != null) {
				return this.left.searchParent(value); // 向左子树递归查找
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value); // 向右子树递归查找
			} else {
				return null; // 没有找到父结点
			}
		}

	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	// 添加结点的方法
	// 递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if (node == null) {
			return;
		}

		// 判断传入的结点的值,和当前子树的根结点的值关系
		if (node.value < this.value) {
			// 如果当前结点左子结点为null
			if (this.left == null) {
				this.left = node;
			} else {
				// 递归的向左子树添加
				this.left.add(node);
			}
		} else { // 添加的结点的值大于 当前结点的值
			if (this.right == null) {
				this.right = node;
			} else {
				// 递归的向右子树添加
				this.right.add(node);
			}

		}
		
		//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
		if(rightHeight() - leftHeight() > 1) {
			//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
			if(right != null && right.leftHeight() > right.rightHeight()) {
				//先对右子结点进行右旋转
				right.rightRotate();
				//然后在对当前结点进行左旋转
				leftRotate(); //左旋转..
			} else {
				//直接进行左旋转即可
				leftRotate();
			}
			return ; //必须要!!!
		}
		
		//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
		if(leftHeight() - rightHeight() > 1) {
			//如果它的左子树的右子树高度大于它的左子树的高度
			if(left != null && left.rightHeight() > left.leftHeight()) {
				//先对当前结点的左结点(左子树)->左旋转
				left.leftRotate();
				//再对当前结点进行右旋转
				rightRotate();
			} else {
				//直接进行右旋转即可
				rightRotate();
			}
		}
	}

	// 中序遍历
	public void infixOrder() {
		if (this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.infixOrder();
		}
	}

}

发布了95 篇原创文章 · 获赞 64 · 访问量 8万+

猜你喜欢

转载自blog.csdn.net/qq_43115606/article/details/104413005