使用卷积神经网络对mnist数据集进行分析

  使用卷积神经网络对mnist数据集进行分析

  使用tensorflow对mnist数据集进行建模

  #1、导入需要用到的包

  import tensorflow as tf

  import random

  import numpy as np

  import matplotlib.pyplot as plt

  import datetime

  from tensorflow.examples.tutorials.mnist import input_data

  #2、导入mnist数据集

  mnist = input_data.read_data_sets("data/", one_hot=True)

扫描二维码关注公众号,回复: 11011187 查看本文章

  #3、定义x和y,即输入x和标签y

  tf.reset_default_graph()

  sess = tf.InteractiveSession()

  x = tf.placeholder("float", shape = [None, 28,28,1]) #输入是28x28、通道是1的图片

  y_ = tf.placeholder("float", shape = [None, 10]) #输出是一个10维的向量,表示10个分类

  W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) #第一层的卷积,大小是5x5,数量是32个

  b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #第一层的偏置,大小是32

  #4、建立第一层卷积层

  h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 #第一层卷积层的建立

  h_conv1 = tf.nn.relu(h_conv1) #第一层卷积层的激活函数

  h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #第一层卷积层上的池化

  def conv2d(x, W):

  return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')

  def max_pool_2x2(x):

  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

  #5、建立第二层卷积层

  W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))

  b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))

  h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

  h_pool2 = max_pool_2x2(h_conv2)

  #6、第一个全连接层

  W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))

  b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))

  h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

  #7、Dropout层

  keep_prob = tf.placeholder("float")

  h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

  #8、第二个全连接层

  W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))

  b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))

  #9、全连接层

  y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

  #10、

  【完整代码】

  #1、导入需要用到的包

  import tensorflow as tf

  import random

  import numpy as np

  import matplotlib.pyplot as plt

  import datetime

  from tensorflow.examples.tutorials.mnist import input_data

  #2、导入mnist数据集

  mnist = input_data.read_data_sets("data/", one_hot=True)

  #3、定义x和y,即输入x和标签y

  tf.reset_default_graph()

  sess = tf.InteractiveSession()

  x = tf.placeholder("float", shape = [None, 28,28,1]) #输入是28x28、通道是1的图片

  y_ = tf.placeholder("float", shape = [None, 10]) #输出是一个10维的向量,表示10个分类

  W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) #第一层的卷积,大小是5x5,数量是32个

  b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #第一层的偏置,大小是32

  #4、建立第一层卷积层

  h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 #第一层卷积层的建立

  h_conv1 = tf.nn.relu(h_conv1) #第一层卷积层的激活函数

  h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #第一层卷积层上的池化

  def conv2d(x, W):郑州妇科医院哪家好 http://www.sptdfk.com/

  return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')

  def max_pool_2x2(x):

  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

  #5、建立第二层卷积层

  W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))

  b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))

  h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

  h_pool2 = max_pool_2x2(h_conv2)

  #6、第一个全连接层

  W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))

  b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))

  h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

  #7、Dropout层

  keep_prob = tf.placeholder("float")

  h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

  #8、第二个全连接层

  W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))

  b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))

  #9、全连接层

  y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

  crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y))

  trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)

  correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

  accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

  sess.run(tf.global_variables_initializer())

  batchSize = 50

  for i in range(1000):

  batch = mnist.train.next_batch(batchSize)

  trainingInputs = batch[0].reshape([batchSize,28,28,1])

  trainingLabels = batch[1]

  if i%100 == 0:

  trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})

  print ("step %d, training accuracy %g"%(i, trainAccuracy))

  trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})

猜你喜欢

转载自www.cnblogs.com/djw12333/p/12743925.html
今日推荐