day13【Collection、泛型】-笔记

day13【Collection、泛型】

主要内容

Collection集合

迭代器

增强for

泛型

教学目标

能够说出集合与数组的区别

说出Collection集合的常用功能

能够使用迭代器对集合进行取元素

能够说出集合的使用细节

能够使用集合存储自定义类型

能够使用foreach循环遍历集合

能够使用泛型定义集合对象

能够理解泛型上下限

能够阐述泛型通配符的作用

第一章 Collection集合

1.1 集合概述

在前面基础班我们已经学习过并使用过集合ArrayList<E> ,那么集合到底是什么呢?

  • 集合:集合是java中提供的一种容器,可以用来存储多个数据。

集合和数组既然都是容器,它们有啥区别呢?

  • 数组的长度是固定的。集合的长度是可变的。
  • 数组中存储的是同一类型的元素,可以存储基本数据类型值。集合存储的都是对象。而且对象的类型可以不一致。在开发中一般当对象多的时候,使用集合进行存储。

1.2 集合框架

JAVASE提供了满足各种需求的API,在使用这些API前,先了解其继承与接口操作架构,才能了解何时采用哪个类,以及类之间如何彼此合作,从而达到灵活应用。

集合按照其存储结构可以分为两大类,分别是单列集合java.util.Collection和双列集合java.util.Map,今天我们主要学习Collection集合,在后面讲解Map集合。

  • Collection:单列集合类的根接口,用于存储一系列符合某种规则的元素,它有两个重要的子接口,分别是java.util.Listjava.util.Set。其中,List的特点是元素有序、元素可重复。Set的特点是元素无序,而且不可重复。List接口的主要实现类有java.util.ArrayListjava.util.LinkedListSet接口的主要实现类有java.util.HashSetjava.util.TreeSet

从上面的描述可以看出JDK中提供了丰富的集合类库,为了便于初学者进行系统地学习,接下来通过一张图来描述整个集合类的继承体系。

其中,橙色框里填写的都是接口类型,而蓝色框里填写的都是具体的实现类。这几天将针对图中所列举的集合类进行逐一地讲解。

集合本身是一个工具,它存放在java.util包中。在Collection接口定义着单列集合框架中最最共性的内容。

1.3 Collection 常用功能

Collection是所有单列集合的父接口,因此在Collection中定义了单列集合(List和Set)通用的一些方法,这些方法可用于操作所有的单列集合。方法如下:

  • public boolean add(E e): 把给定的对象添加到当前集合中 。
  • public void clear() :清空集合中所有的元素。
  • public boolean remove(E e): 把给定的对象在当前集合中删除。
  • public boolean contains(E e): 判断当前集合中是否包含给定的对象。
  • public boolean isEmpty(): 判断当前集合是否为空。
  • public int size(): 返回集合中元素的个数。
  • public Object[] toArray(): 把集合中的元素,存储到数组中。

方法演示:

import java.util.ArrayList;

import java.util.Collection;

public class Demo1Collection {

   public static void main(String[] args) {

// 创建集合对象 

  // 使用多态形式

  Collection<String> coll = new ArrayList<String>();

  // 使用方法

  // 添加功能 boolean add(String s)

  coll.add("小李广");

  coll.add("扫地僧");

  coll.add("石破天");

  System.out.println(coll);

  // boolean contains(E e) 判断o是否在集合中存在

  System.out.println("判断 扫地僧 是否在集合中"+coll.contains("扫地僧"));

  //boolean remove(E e) 删除在集合中的o元素

  System.out.println("删除石破天:"+coll.remove("石破天"));

  System.out.println("操作之后集合中元素:"+coll);

  // size() 集合中有几个元素

System.out.println("集合中有"+coll.size()+"个元素");

// Object[] toArray()转换成一个Object数组

  Object[] objects = coll.toArray();

  // 遍历数组

  for (int i = 0; i < objects.length; i++) {

System.out.println(objects[i]);

}

// void clear() 清空集合

coll.clear();

System.out.println("集合中内容为:"+coll);

// boolean isEmpty() 判断是否为空

System.out.println(coll.isEmpty()); 

}

}

tips: 有关Collection中的方法可不止上面这些,其他方法可以自行查看API学习。

第二章 Iterator迭代器

2.1 Iterator接口

在程序开发中,经常需要遍历集合中的所有元素。针对这种需求,JDK专门提供了一个接口java.util.IteratorIterator接口也是Java集合中的一员,但它与CollectionMap接口有所不同,Collection接口与Map接口主要用于存储元素,而Iterator主要用于迭代访问(即遍历)Collection中的元素,因此Iterator对象也被称为迭代器。

想要遍历Collection集合,那么就要获取该集合迭代器完成迭代操作,下面介绍一下获取迭代器的方法:

  • public Iterator iterator(): 获取集合对应的迭代器,用来遍历集合中的元素的。

下面介绍一下迭代的概念:

  • 迭代:即Collection集合元素的通用获取方式。在取元素之前先要判断集合中有没有元素,如果有,就把这个元素取出来,继续在判断,如果还有就再取出出来。一直把集合中的所有元素全部取出。这种取出方式专业术语称为迭代。

Iterator接口的常用方法如下:

  • public E next():返回迭代的下一个元素。
  • public boolean hasNext():如果仍有元素可以迭代,则返回 true。

接下来我们通过案例学习如何使用Iterator迭代集合中元素:

public class IteratorDemo {

public static void main(String[] args) {

       // 使用多态方式 创建对象

       Collection<String> coll = new ArrayList<String>();



       // 添加元素到集合

       coll.add("串串星人");

       coll.add("吐槽星人");

       coll.add("汪星人");

       //遍历

       //使用迭代器 遍历   每个集合对象都有自己的迭代器

       Iterator<String> it = coll.iterator();

       // 泛型指的是 迭代出 元素的数据类型

       while(it.hasNext()){ //判断是否有迭代元素

           String s = it.next();//获取迭代出的元素

           System.out.println(s);

      }

}

}

tips::在进行集合元素取出时,如果集合中已经没有元素了,还继续使用迭代器的next方法,将会发生java.util.NoSuchElementException没有集合元素的错误。

2.2 迭代器的实现原理

我们在之前案例已经完成了Iterator遍历集合的整个过程。当遍历集合时,首先通过调用t集合的iterator()方法获得迭代器对象,然后使用hashNext()方法判断集合中是否存在下一个元素,如果存在,则调用next()方法将元素取出,否则说明已到达了集合末尾,停止遍历元素。

Iterator迭代器对象在遍历集合时,内部采用指针的方式来跟踪集合中的元素,为了让初学者能更好地理解迭代器的工作原理,接下来通过一个图例来演示Iterator对象迭代元素的过程:

在调用Iterator的next方法之前,迭代器的索引位于第一个元素之前,不指向任何元素,当第一次调用迭代器的next方法后,迭代器的索引会向后移动一位,指向第一个元素并将该元素返回,当再次调用next方法时,迭代器的索引会指向第二个元素并将该元素返回,依此类推,直到hasNext方法返回false,表示到达了集合的末尾,终止对元素的遍历。

2.3 增强for

增强for循环(也称for each循环)是JDK1.5以后出来的一个高级for循环,专门用来遍历数组和集合的。它的内部原理其实是个Iterator迭代器,所以在遍历的过程中,不能对集合中的元素进行增删操作。

格式:

for(元素的数据类型  变量 : Collection集合or数组){ 

//写操作代码

}

它用于遍历Collection和数组。通常只进行遍历元素,不要在遍历的过程中对集合元素进行增删操作。

练习1:遍历数组

public class NBForDemo1 {

   public static void main(String[] args) {

int[] arr = {3,5,6,87};

      //使用增强for遍历数组

for(int a : arr){//a代表数组中的每个元素

System.out.println(a);

}

}

}

练习2:遍历集合

public class NBFor {

   public static void main(String[] args) {        

  Collection<String> coll = new ArrayList<String>();

  coll.add("小河神");

  coll.add("老河神");

  coll.add("神婆");

  //使用增强for遍历

  for(String s :coll){//接收变量s代表 代表被遍历到的集合元素

  System.out.println(s);

  }

}

}

tips: 新for循环必须有被遍历的目标。目标只能是Collection或者是数组。新式for仅仅作为遍历操作出现。

第三章 泛型

3.1 泛型概述

在前面学习集合时,我们都知道集合中是可以存放任意对象的,只要把对象存储集合后,那么这时他们都会被提升成Object类型。当我们在取出每一个对象,并且进行相应的操作,这时必须采用类型转换。

大家观察下面代码:

public class GenericDemo {

public static void main(String[] args) {

Collection coll = new ArrayList();

coll.add("abc");

coll.add("hou");

coll.add(5);//由于集合没有做任何限定,任何类型都可以给其中存放

Iterator it = coll.iterator();

while(it.hasNext()){

//需要打印每个字符串的长度,就要把迭代出来的对象转成String类型

String str = (String) it.next();

System.out.println(str.length());

}

}

}

程序在运行时发生了问题java.lang.ClassCastException。 为什么会发生类型转换异常呢? 我们来分析下:由于集合中什么类型的元素都可以存储。导致取出时强转引发运行时 ClassCastException。 怎么来解决这个问题呢? Collection虽然可以存储各种对象,但实际上通常Collection只存储同一类型对象。例如都是存储字符串对象。因此在JDK5之后,新增了泛型(Generic)语法,让你在设计API时可以指定类或方法支持泛型,这样我们使用API的时候也变得更为简洁,并得到了编译时期的语法检查。

  • 泛型:可以在类或方法中预支地使用未知的类型。

tips:一般在创建对象时,将未知的类型确定具体的类型。当没有指定泛型时,默认类型为Object类型。

3.2 使用泛型的好处

上一节只是讲解了泛型的引入,那么泛型带来了哪些好处呢?

  • 将运行时期的ClassCastException,转移到了编译时期变成了编译失败。
  • 避免了类型强转的麻烦。

通过我们如下代码体验一下:

public class GenericDemo2 {

public static void main(String[] args) {

       Collection<String> list = new ArrayList<String>();

       list.add("abc");

       list.add("hou");

       // list.add(5);//当集合明确类型后,存放类型不一致就会编译报错

       // 集合已经明确具体存放的元素类型,那么在使用迭代器的时候,迭代器也同样会知道具体遍历元素类型

       Iterator<String> it = list.iterator();

       while(it.hasNext()){

           String str = it.next();

           //当使用Iterator<String>控制元素类型后,就不需要强转了。获取到的元素直接就是String类型

           System.out.println(str.length());

      }

}

}

tips:泛型是数据类型的一部分,我们将类名与泛型合并一起看做数据类型。

3.3 泛型的定义与使用

我们在集合中会大量使用到泛型,这里来完整地学习泛型知识。

泛型,用来灵活地将数据类型应用到不同的类、方法、接口当中。将数据类型作为参数进行传递。

定义和使用含有泛型的类

定义格式:

修饰符 class 类名<代表泛型的变量> { }

例如,API中的ArrayList集合:

class ArrayList<E>{ 

   public boolean add(E e){ }

   public E get(int index){ }

  ....

}

使用泛型: 即什么时候确定泛型。

在创建对象的时候确定泛型

例如,ArrayList<String> list = new ArrayList<String>();

此时,变量E的值就是String类型,那么我们的类型就可以理解为:

class ArrayList<String>{ 

    public boolean add(String e){ }

    public String get(int index){ }

    ...

}

再例如,ArrayList<Integer> list = new ArrayList<Integer>();

此时,变量E的值就是Integer类型,那么我们的类型就可以理解为:

class ArrayList<Integer> {

    public boolean add(Integer e) { }

    public Integer get(int index) {  }

     ...

}

举例自定义泛型类

public class MyGenericClass<MVP> {

    //没有MVP类型,在这里代表 未知的一种数据类型 未来传递什么就是什么类型

    private MVP mvp;

    public void setMVP(MVP mvp) {

        this.mvp = mvp;

    }

    public MVP getMVP() {

        return mvp;

    }

}

使用:

public class GenericClassDemo {

    public static void main(String[] args) {

        // 创建一个泛型为String的类

        MyGenericClass<String> my = new MyGenericClass<String>();

        // 调用setMVP

        my.setMVP("大胡子登登");

        // 调用getMVP

        String mvp = my.getMVP();

        System.out.println(mvp);

        //创建一个泛型为Integer的类

        MyGenericClass<Integer> my2 = new MyGenericClass<Integer>();

        my2.setMVP(123);

        Integer mvp2 = my2.getMVP();

    }

}

含有泛型的方法

定义格式:

修饰符 <代表泛型的变量> 返回值类型 方法名(参数){  }

例如,

public class MyGenericMethod {

    public <MVP> void show(MVP mvp) {

        System.out.println(mvp.getClass());

    }



    public <MVP> MVP show2(MVP mvp) {

        return mvp;

    }

}

使用格式:调用方法时,确定泛型的类型

public class GenericMethodDemo {

    public static void main(String[] args) {

        // 创建对象

        MyGenericMethod mm = new MyGenericMethod();

        // 演示看方法提示

        mm.show("aaa");

        mm.show(123);

        mm.show(12.45);

    }

}

含有泛型的接口

定义格式:

修饰符 interface接口名<代表泛型的变量> {  }

例如,

public interface MyGenericInterface<E>{

    public abstract void add(E e);

    public abstract E getE();

}

 

使用格式:

1、定义类时确定泛型的类型

例如

public class MyImp1 implements MyGenericInterface<String> {

@Override

   public void add(String e) {

       // 省略...

  }



@Override

public String getE() {

return null;

}

}

此时,泛型E的值就是String类型。

2、始终不确定泛型的类型,直到创建对象时,确定泛型的类型

例如

public class MyImp2<E> implements MyGenericInterface<E> {

@Override

public void add(E e) {

      // 省略...

}



@Override

public E getE() {

return null;

}

}

确定泛型:

/*

* 使用

*/

public class GenericInterface {

   public static void main(String[] args) {

       MyImp2<String>  my = new MyImp2<String>();  

       my.add("aa");

  }

}

3.4 泛型通配符

当使用泛型类或者接口时,传递的数据中,泛型类型不确定,可以通过通配符<?>表示。但是一旦使用泛型的通配符后,只能使用Object类中的共性方法,集合中元素自身方法无法使用。

通配符基本使用

泛型的通配符:不知道使用什么类型来接收的时候,此时可以使用?,  ?表示未知通配符。

此时只能接受数据,不能往该集合中存储数据。

举个例子大家理解使用即可:

public static void main(String[] args) {

        Collection<Integer> list1 = new ArrayList<Integer>();

        getElement(list1);

        Collection<String> list2 = new ArrayList<String>();

        getElement(list2);

        }

public static void getElement(Collection<?> coll){}

 

//?代表可以接收任意类型

tips:泛型不存在继承关系 Collection<Object> list = new ArrayList<String>();这种是错误的。

通配符高级使用----受限泛型

之前设置泛型的时候,实际上是可以任意设置的,只要是类就可以设置。但是在JAVA的泛型中可以指定一个泛型的上限下限

泛型的上限

  • 格式类型名称 <? extends 类 > 对象名称
  • 意义只能接收该类型及其子类

泛型的下限

  • 格式类型名称 <? super 类 > 对象名称
  • 意义只能接收该类型及其父类型

比如:现已知Object类,String 类,Number类,Integer类,其中Number是Integer的父类

public static void main(String[] args) {

        Collection<Integer> list1 = new ArrayList<Integer>();

        Collection<String> list2 = new ArrayList<String>();

        Collection<Number> list3 = new ArrayList<Number>();

        Collection<Object> list4 = new ArrayList<Object>();



        getElement(list1);

        getElement(list2);//报错

        getElement(list3);

        getElement(list4);//报错



        getElement2(list1);//报错

        getElement2(list2);//报错

        getElement2(list3);

        getElement2(list4);



        }
 
// 泛型的上限:此时的泛型?,必须是Number类型或者Number类型的子类
public static void getElement1(Collection<? extends Number> coll){}
// 泛型的下限:此时的泛型?,必须是Number类型或者Number类型的父类
public static void getElement2(Collection<? super Number> coll){}

第四章 集合综合案例

4.1 案例介绍

按照斗地主的规则,完成洗牌发牌的动作。 具体规则:

使用54张牌打乱顺序,三个玩家参与游戏,三人交替摸牌,每人17张牌,最后三张留作底牌。

4.2 案例分析

  • 准备牌:

牌可以设计为一个ArrayList<String>,每个字符串为一张牌。 每张牌由花色数字两部分组成,我们可以使用花色集合与数字集合嵌套迭代完成每张牌的组装。 牌由Collections类的shuffle方法进行随机排序。

  • 发牌

将每个人以及底牌设计为ArrayList<String>,将最后3张牌直接存放于底牌,剩余牌通过对3取模依次发牌。

  • 看牌

直接打印每个集合。

4.3 代码实现

import java.util.ArrayList;

import java.util.Collections;



public class Poker {

   public static void main(String[] args) {

       /*

       * 1: 准备牌操作

       */

       //1.1 创建牌盒 将来存储牌面的 

       ArrayList<String> pokerBox = new ArrayList<String>();

       //1.2 创建花色集合

       ArrayList<String> colors = new ArrayList<String>();



       //1.3 创建数字集合

       ArrayList<String> numbers = new ArrayList<String>();



       //1.4 分别给花色 以及 数字集合添加元素

       colors.add("");

       colors.add("");

       colors.add("");

       colors.add("");



       for(int i = 2;i<=10;i++){

           numbers.add(i+"");

      }

       numbers.add("J");

       numbers.add("Q");

       numbers.add("K");

       numbers.add("A");

       //1.5 创造牌 拼接牌操作

       // 拿出每一个花色 然后跟每一个数字 进行结合 存储到牌盒中

       for (String color : colors) {

           //color每一个花色 

           //遍历数字集合

           for(String number : numbers){

               //结合

               String card = color+number;

               //存储到牌盒中

               pokerBox.add(card);

          }

      }

       //1.6大王小王

       pokerBox.add("");

       pokerBox.add("");  

       // System.out.println(pokerBox);

       //洗牌 是不是就是将 牌盒中 牌的索引打乱 

       // Collections类 工具类 都是 静态方法

       // shuffer方法   

       /*

        * static void shuffle(List<?> list) 

        *     使用默认随机源对指定列表进行置换。 

        */

       //2:洗牌

       Collections.shuffle(pokerBox);

       //3 发牌

       //3.1 创建 三个 玩家集合 创建一个底牌集合

       ArrayList<String> player1 = new ArrayList<String>();

       ArrayList<String> player2 = new ArrayList<String>();

       ArrayList<String> player3 = new ArrayList<String>();

       ArrayList<String> dipai = new ArrayList<String>();  



       //遍历 牌盒 必须知道索引   

       for(int i = 0;i<pokerBox.size();i++){

           //获取 牌面

           String card = pokerBox.get(i);

           //留出三张底牌 存到 底牌集合中

           if(i>=51){//存到底牌集合中

               dipai.add(card);

          } else {

               //玩家1   %3 ==0

               if(i%3==0){

                player1.add(card);

              }else if(i%3==1){//玩家2

                player2.add(card);

              }else{//玩家3

                player3.add(card);

              }

          }

      }

       //看看

       System.out.println("令狐冲:"+player1);

       System.out.println("田伯光:"+player2);

       System.out.println("绿竹翁:"+player3);

       System.out.println("底牌:"+dipai);  

}

}

 

发布了43 篇原创文章 · 获赞 0 · 访问量 1101

猜你喜欢

转载自blog.csdn.net/aaa_56234/article/details/104920608