计算方法第四章部分习题

计算方法第六次作业

24. 使 F F T f ( x ) = x [ π , π ] S 4 24.使用FFT算法,求函数f(x)=\left |x\right|在[-\pi,\pi]上的四次三角插值多项式S_4 (x)

c k = j = 0 7 f j ( e i π 4 ) j k , 由c_k=\sum_{j=0}^{7}f_j(e^{i\frac{\pi}{4}})^{jk},求得


{ c 0 = 4 π c 1 = π + 1 2 π ω 1 2 π ω 3 = 5.363024 c 2 = 0 c 3 = π + 1 2 π ω 3 + 1 2 π ω 5 = 0.920151 c 4 = 0 \left\{ \begin{array}{l} c_0=4\pi\\ c_1=\pi+\frac{1}{2}\pi \omega-\frac{1}{2}\pi \omega^3=5.363024\\ c_2=0\\ c_3=\pi+\frac{1}{2}\pi \omega^3+\frac{1}{2}\pi \omega^5=0.920151\\ c_4=0\\ \end{array} \right.

a k = 1 4 R e ( c k e i π k ) , 由a_k=\frac{1}{4}R_e(c_ke^{-i\pi k}),求得
{ a 0 = 1 4 R e ( c 0 ) = π = 3.1415926 a 1 = 1 4 R e ( c 1 e i π ) = 1.340759 b 1 = 0 a 2 = b 2 = 0 a 3 = 1 4 R e ( c 3 e i π 3 ) = 0.230037 b 3 = 0 a 4 = b 4 = 0 \left\{ \begin{array}{l} a_0=\frac{1}{4}R_e(c_0)=\pi=3.1415926\\ a_1=\frac{1}{4}R_e(c_1e^{-i\pi})=-1.340759 \\ b_1=0\\ a_2=b_2=0\\ a_3=\frac{1}{4}R_e(c_3e^{-i\pi3})=-0.230037\\b_3=0\\ a_4=b_4=0\\ \end{array} \right.

S 4 ( x ) = 1.570796 1.340759 c o s x 0.230037 c o s 3 x 即S_4(x)=1.570796-1.340759cosx-0.230037cos3x

1. 使 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造的求积公式具有的代数精度

​ 1.1
h h f ( x ) d x A 1 f ( h ) + A 0 f ( 0 ) + A 1 f ( h ) \int_{-h}^{h}f(x)dx\approx A_{-1}f(-h)+A_0f(0)+A_1f(h)
f ( x ) = 1 , x , x 2 将f(x)=1,x,x^2分别代入公式两端并令其左右相等,得
{ A 1 + A 0 + A 1 = 2 h h A 1 + h A 1 = 0 h 2 A 1 + h 2 A 1 = 2 3 h 2 \left\{ \begin{array}{l} A_{-1}+A_0+A_1=2h \\ -hA_{-1}+hA_1=0 \\ h^2A_{-1}+h^2A_1=\frac{2}{3}h^2 \end{array} \right.
​ $ 解得A_{-1}=A_1=\frac{h}{3},A_0=\frac{4h}{3},所以所求公式至少有两次代数精度,又因为:$


{ h h x 3 d x = h 3 ( h ) 3 + h 3 h 3 h h x 4 d x = h 3 ( h ) 3 + h 3 h 4 \left\{ \begin{array}{l} \int_{-h}^{h}x^3dx=\frac{h}{3}(-h)^3+\frac{h}{3}\cdot{h^3} \\ \int_{-h}^{h}x^4dx=\frac{h}{3}(-h)^3+\frac{h}{3}\cdot{h^4} \end{array} \right.
h h f ( x ) d x h 3 f ( h ) + 4 3 h f ( 0 ) + h 3 f ( h ) \therefore \int_{-h}^{h}f(x)dx\approx \frac{h}{3}f(-h)+\frac{4}{3}hf(0)+\frac{h}{3}f(h),具有三次代数精度

​ 1.4

​ 当f(x)=1,x时,有
0 h 1 d x = h 2 [ 1 + 1 ] + 0 , 0 h x d x = h 2 [ 0 + h ] + a h 2 [ 1 1 ] \int_{0}^{h}1dx =\frac{h}{2}[1+1]+0, \int_{0}^{h}xdx =\frac{h}{2}[0+h]+ah^2[1-1]
f ( x ) = x 2 将f(x)=x^2分别代入公式两端并令其左右相等,得
0 h x 2 d x = h 2 [ 0 + h 2 ] + a h 2 [ 0 2 h ] \int_{0}^{h}x^2dx =\frac{h}{2}[0+h^2]+ah^2[0-2h]

$ 解得a=\frac{1}{12},所以所求公式至少有两次代数精度,又因为:$


{ 0 h x 3 d x = h 2 [ 0 + h 3 ] + h 12 [ 0 3 h 2 ] 0 h x 4 d x h 2 [ 0 + h 4 ] + h 2 12 [ 0 4 h 3 ] \left\{ \begin{array}{l} \int_{0}^{h}x^3dx=\frac{h}{2}[0+h^3]+\frac{h}{12}[0-3h^2] \\ \int_{0}^{h}x^4dx \neq \frac{h}{2}[0+h^4]+\frac{h^2}{12}[0-4h^3] \end{array} \right.

\therefore 所求公式具有三次代数精度

4. 使 0 1 e x d x . 4.使用辛普森公式求积分 \int_0^1 e^{-x}dx 并估计误差.

​ $\left|R(f) \right|=\left| -\frac{b-a}{180}(\frac{b-a}{2})^4 f^{(4)}(\eta)\right| $

1 180 1 2 4 e 0 \leq \frac{1}{180}\frac{1}{2^4}e^0

= 0.0003472 , η ( 0 , 1 ) =0.0003472,\eta \in(0,1)

5.推导下列三种矩形公式:

1. $\int_a^b f(x)dx =(b-a)f(a)+\frac{f{’}(\eta)}{2}(b-a)2; $

f ( x ) = f ( a ) + f ( ξ ) ( x a ) , ξ ( a , x ) , 左矩形公式,f(x)=f(a)+f^{'}(\xi)(x-a),\xi \in(a,x),两边积分,得:

a b f ( x ) d x = a b f ( a ) d x + a b f ( ξ ) ( x a ) \int_a^b f(x)dx = \int_a^b f(a)dx+ \int_a^b f^{'}(\xi)(x-a)

x a [ a , b ] η ( a , b ) , 使 由于x-a在[a,b]上不变号,故有\eta \in (a,b),使得

a b f ( x ) d x = ( b a ) f ( a ) + f ( η ) a b ( x a ) d x , η ( a , b ) \int_a^b f(x)dx = (b-a)f(a)+ f^{'}(\eta) \int_a^b(x-a)dx,\eta \in(a,b)

从而有

a b f ( x ) d x = ( b a ) f ( a ) + 1 2 f ( η ) ( b a ) 2 , η ( a , b ) \int_a^b f(x)dx = (b-a)f(a)+ \frac{1}{2}f^{'}(\eta) (b-a)^2,\eta \in(a,b)

2. a b f ( x ) d x = ( b a ) f ( a ) + f ( η ) 2 ( b a ) 2 ; \int_a^b f(x)dx =(b-a)f(a)+\frac{f^{'}(\eta)}{2}(b-a)^2;

f ( x ) = f ( b ) + f ( ξ ) ( x b ) , ξ ( a , x ) , 右矩形公式,f(x)=f(b)+f^{'}(\xi)(x-b),\xi \in(a,x),两边积分,得:

( 1 ) , f ( x ) b 同(1),将f(x)在b点处展开并积分,得

a b f ( x ) d x = ( b a ) f ( b ) 1 2 f ( η ) ( b a ) 2 , η ( a , b ) \int_a^b f(x)dx = (b-a)f(b)- \frac{1}{2}f^{'}(\eta) (b-a)^2,\eta \in(a,b)

3. a b f ( x ) d x = ( b a ) f ( a ) + f ( η ) 2 ( b a ) 2 ; \int_a^b f(x)dx =(b-a)f(a)+\frac{f^{'}(\eta)}{2}(b-a)^2;

f ( x ) = f ( a + b 2 ) + f ( a + b 2 ) ( x a + b 2 ) + 1 2 f ( ξ ) ( x a + b 2 ) 2 , ξ ( a , x ) , 中矩形公式,f(x)=f(\frac{a+b}{2})+f^{'}(\frac{a+b}{2})(x-\frac{a+b}{2})+\frac{1}{2}f^{''}(\xi)(x-\frac{a+b}{2})^2,\xi \in(a,x),

两边积分并运用积分中值定理,得:

a b f ( x ) d x = f ( a + b 2 ) ( b a ) + f ( a + b 2 ) a b ( x a + b 2 ) d x + 1 2 a b f ( ξ ) ( x a + b 2 ) 2 d x \int_a^bf(x)dx=f(\frac{a+b}{2})(b-a)+f^{'}(\frac{a+b}{2})\int_a^b(x-\frac{a+b}{2})dx+\frac{1}{2}\int_a^bf^{''}(\xi)(x-\frac{a+b}{2})^2dx

= ( b a ) f ( a + b 2 ) + 1 24 f ( η ) ( b a ) 3 , η ( a , b ) = (b-a)f(\frac{a+b}{2})+ \frac{1}{24}f^{''}(\eta) (b-a)^3,\eta \in(a,b)

猜你喜欢

转载自blog.csdn.net/weixin_43798170/article/details/105594288
今日推荐