(3) 李航《统计学习方法》基于Python实现——K近邻法

1:概念

  • k近邻是一种基本分类与回归方法。本文只讨论分类问题中的k近邻法。k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此k近邻法不具有显式的学习过程。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。
  • k值的选择,举例度量和分类决策规则是k近邻算法的三个基本要素。

2:k近邻模型

2.1:模型

  • k近邻法中,当训练数据、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属类别唯一的确定。这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里面的每个点所属的类
  • 特征空间中,对每个训练实例点 x i x_{i} ,距离该点比其他点更近的所有点组成的一个区域,叫做单元(cell),每个训练实例点拥有一个单元,所有训练实例点的单元构成对特征空间的一个划分。最近邻法将实例 x i x_{i} 的类 y i y_{i} 作为其单元中所有点的类标记。这样,每个单元的实例点的类别是确定的。
    在这里插入图片描述

2.2:距离度量

  • 特征空间中两个实例点的距离度量是两个实力点相似程度的反映。k近邻模型的特征空间一般是n维实数向量空间 R n \mathbf{R}^{n} ,使用的距离度量是欧氏距离,但也可以是其他距离,如更一般的 L p L_{p} 距离,或者Minkowski距离。
    设特征空间 X \mathcal{X} n n 维实数向量空间 R n \mathbf{R}^{n} x i , x j X , x i = ( x i ( 1 ) , x i ( 2 ) ,   , x i ( n ) ) x_{i}, x_{j} \in \mathcal{X}, \quad x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\top} x j = ( x j ( 1 ) , x j ( 2 ) ,   , x j ( n ) ) T , x i , x j x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}}, \quad x_{i}, x_{j} L p L_{p} 距离定义为: L p ( x i , x j ) = ( l = 1 n x i ( l ) x j ( l ) p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}}

这里, p 1 p \geqslant 1 ,当 p = 2 p=2 时,称为欧式距离,即
L 2 ( x i , x j ) = ( l = 1 n x i ( l ) x j ( l ) 2 ) 1 2 L_{2}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{2}\right)^{\frac{1}{2}}

p = 1 p=1 时,称为曼哈顿距离,即
L 1 ( x i , x j ) = l = 1 n x i ( l ) x j ( l ) L_{1}\left(x_{i}, x_{j}\right)=\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|

p = p=\infty 时,它是各个坐标距离的最大值,即
L ( x i , x j ) = max l x i ( l ) x j ( l ) L_{\infty}\left(x_{i}, x_{j}\right)=\max _{l}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|

3:Python代码实现

3.1 导入数据集

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter

# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
# data = np.array(df.iloc[:100, [0, 1, -1]])

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

3.2 数据集切分

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

3.3 实现KNN

class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2):
        """
        parameter: n_neighbors 临近点个数
        parameter: p 距离度量
        """
        self.n = n_neighbors
        self.p = p
        self.X_train = X_train
        self.y_train = y_train
    
    def predict(self, X):
        # 取出n个点
        knn_list = []
        for i in range(self.n):
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            knn_list.append((dist, self.y_train[i]))
            
        for i in range(self.n, len(self.X_train)):
            max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            if knn_list[max_index][0] > dist:
                knn_list[max_index] = (dist, self.y_train[i])
                
        # 统计
        knn = [k[-1] for k in knn_list]
        count_pairs = Counter(knn)
        max_count = sorted(count_pairs, key=lambda x:x)[-1]
        return max_count
    
    def score(self, X_test, y_test):
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)
        
clf = KNN(X_train, y_train)
clf.score(X_test, y_test)
test_point = [6.0, 3.0]
print('Test Point: {}'.format(clf.predict(test_point)))

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

分类结果:
在这里插入图片描述

4:构造kd树实现

# kd-tree每个结点中主要包含的数据结构如下 
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split      # 整数(进行分割维度的序号)
        self.left = left        # 该结点分割超平面左子空间构成的kd-tree
        self.right = right      # 该结点分割超平面右子空间构成的kd-tree
 
 
class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据维度
        
        def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set:    # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象中的序号
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2      # //为Python中的整数除法
            median = data_set[split_pos]        # 中位数分割点             
            split_next = (split + 1) % k        # cycle coordinates
            
            # 递归的创建kd树
            return KdNode(median, split, 
                          CreateNode(split_next, data_set[:split_pos]),     # 创建左子树
                          CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
                                
        self.root = CreateNode(0, data)         # 从第0维分量开始构建kd树,返回根节点


# KDTree的前序遍历
def preorder(root):  
    print (root.dom_elt)  
    if root.left:      # 节点不为空
        preorder(root.left)  
    if root.right:  
        preorder(root.right)  


# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point  nearest_dist  nodes_visited")
  
def find_nearest(tree, point):
    k = len(point) # 数据维度
    def travel(kd_node, target, max_dist):
        if kd_node is None:     
            return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负无穷
 
        nodes_visited = 1
        
        s = kd_node.split        # 进行分割的维度
        pivot = kd_node.dom_elt  # 进行分割的“轴”
        
        if target[s] <= pivot[s]:           # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node  = kd_node.left     # 下一个访问节点为左子树根节点
            further_node = kd_node.right    # 同时记录下右子树
        else:                               # 目标离右子树更近
            nearer_node  = kd_node.right    # 下一个访问节点为右子树根节点
            further_node = kd_node.left
 
        temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域
        
        nearest = temp1.nearest_point       # 以此叶结点作为“当前最近点”
        dist = temp1.nearest_dist           # 更新最近距离
        
        nodes_visited += temp1.nodes_visited  
 
        if dist < max_dist:     
            max_dist = dist    # 最近点将在以目标点为球心,max_dist为半径的超球体内
            
        temp_dist = abs(pivot[s] - target[s])    # 第s维上目标点与分割超平面的距离
        if  max_dist < temp_dist:                # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
            
        #----------------------------------------------------------------------  
        # 计算目标点与分割点的欧氏距离  
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))     
        
        if temp_dist < dist:         # 如果“更近”
            nearest = pivot          # 更新最近点
            dist = temp_dist         # 更新最近距离
            max_dist = dist          # 更新超球体半径
        
        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist) 
        
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist:        # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point    # 更新最近点
            dist = temp2.nearest_dist        # 更新最近距离
 
        return result(nearest, dist, nodes_visited)
 
    return travel(tree.root, point, float("inf"))  # 从根节点开始递归    

测试

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)
from time import clock
from random import random

# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]
 
# 产生n个k维随机向量 
def random_points(k, n):
    return [random_point(k) for _ in range(n)]  

ret = find_nearest(kd, [3,4.5])
print (ret)

N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N))            # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8])      # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)

运行结果:
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/yilulvxing/article/details/89552643