温习大数据框架Spark面试题

一、Spark

在这里插入图片描述

1、你觉得spark 可以完全替代hadoop 么?

Spark 会替代 MR,Spark 存储依赖 HDFS,资源调度依赖 YARN,集群管理依赖 Zookeeper。

2、Spark消费 Kafka,分布式的情况下,如何保证消息的顺序?

Kafka 分布式的单位是 Partition。如何保证消息有序,需要分几个情况讨论。

同一个 Partition 用一个 write ahead log 组织,所以可以保证 FIFO 的顺序。

不同 Partition 之间不能保证顺序。但是绝大多数用户都可以通过 message key 来定义,因为同一个 key 的 message 可以保证只发送到同一个 Partition。比如说 key 是 user id,table row id 等等,所以同一个 user 或者同一个 record 的消息永远只会发送到同一个 Partition上,保证了同一个 user 或 record 的顺序。

当然,如果你有 key skewness 就有些麻烦,需要特殊处理。

实际情况中: (1)不关注顺序的业务大量存在;(2)队列无序不代表消息无序。

第(2)条的意思是说::我们不保证队列的全局有序,但可以保证消息的局部有序。举个例子: 保证来自同1个 order id 的消息,是有序的!

Kafka 中发送1条消息的时候,可以指定(topic, partition, key) 3个参数。partiton 和 key 是可选的。如果你指定了 partition,那就是所有消息发往同1个 partition,就是有序的。并且在消费端,Kafka 保证,1个 partition 只能被1个 consumer 消费。或者你指定 key(比如 order id),具有同1个 key 的所有消息,会发往同1个 partition。也是有序的。

3、对于 Spark 中的数据倾斜问题你有什么好的方案?

简单一句:Spark 数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义 Partitioner,使用 Map 侧 Join 代替 Reduce 侧 Join(内存表合并),给倾斜 Key 加上随机前缀等。

什么是数据倾斜 对 Spark/Hadoop 这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜。数据倾斜指的是,并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈(木桶效应)。

数据倾斜是如何造成的 在 Spark 中,同一个 Stage 的不同 Partition 可以并行处理,而具有依赖关系的不同 Stage 之间是串行处理的。假设某个 Spark Job 分为 Stage 0和 Stage 1两个 Stage,且 Stage 1依赖于 Stage 0,那 Stage 0完全处理结束之前不会处理Stage 1。而 Stage 0可能包含 N 个 Task,这 N 个 Task 可以并行进行。如果其中 N-1个 Task 都在10秒内完成,而另外一个 Task 却耗时1分钟,那该 Stage 的总时间至少为1分钟。换句话说,一个 Stage 所耗费的时间,主要由最慢的那个 Task 决定。由于同一个 Stage 内的所有 Task 执行相同的计算,在排除不同计算节点计算能力差异的前提下,不同 Task 之间耗时的差异主要由该 Task 所处理的数据量决定。

具体解决方案 :
1.调整并行度分散同一个 Task 的不同 Key:Spark 在做 Shuffle 时,默认使用 HashPartitioner对数据进行分区。如果并行度设置的不合适,可能造成大量不相同的 Key 对应的数据被分配到了同一个 Task 上,造成该 Task 所处理的数据远大于其它 Task,从而造成数据倾斜。如果调整 Shuffle 时的并行度,使得原本被分配到同一 Task 的不同 Key 发配到不同 Task 上处理,则可降低原 Task 所需处理的数据量,从而缓解数据倾斜问题造成的短板效应。

2.自定义Partitioner:使用自定义的 Partitioner(默认为 HashPartitioner),将原本被分配到同一个 Task 的不同 Key 分配到不同 Task,可以拿上图继续想象一下,通过自定义 Partitioner 可以把原本分到 Task0 的 Key 分到 Task1,那么 Task0 的要处理的数据量就少了。

3.将 Reduce side(侧) Join 转变为 Map side(侧) Join:通过 Spark 的 Broadcast 机制,将 Reduce 侧 Join 转化为 Map 侧 Join,避免 Shuffle 从而完全消除 Shuffle 带来的数据倾斜。可以看到 RDD2 被加载到内存中了。

4.为 skew 的 key 增加随机前/后缀:为数据量特别大的 Key 增加随机前/后缀,使得原来 Key 相同的数据变为 Key 不相同的数据,从而使倾斜的数据集分散到不同的 Task 中,彻底解决数据倾斜问题。Join 另一则的数据中,与倾斜 Key 对应的部分数据,与随机前缀集作笛卡尔乘积,从而保证无论数据倾斜侧倾斜 Key 如何加前缀,都能与之正常 Join。

5.大表随机添加 N 种随机前缀,小表扩大 N 倍:如果出现数据倾斜的 Key 比较多,上一种方法将这些大量的倾斜 Key 分拆出来,意义不大(很难一个 Key 一个 Key 都加上后缀)。此时更适合直接对存在数据倾斜的数据集全部加上随机前缀,然后对另外一个不存在严重数据倾斜的数据集整体与随机前缀集作笛卡尔乘积(即将数据量扩大 N 倍),可以看到 RDD2 扩大了 N 倍了,再和加完前缀的大数据做笛卡尔积。

4、你所理解的 Spark 的 shuffle 过程?

Spark shuffle 处于一个宽依赖,可以实现类似混洗的功能,将相同的 Key 分发至同一个 Reducer上进行处理。

5、Spark有哪些聚合类的算子,我们应该尽量避免什么类型的算子?

在我们的开发过程中,能避免则尽可能避免使用 reduceByKey、join、distinct、repartition 等会进行 shuffle 的算子,尽量使用 map 类的非 shuffle 算子。这样的话,没有 shuffle 操作或者仅有较少 shuffle 操作的 Spark 作业,可以大大减少性能开销。

6、spark on yarn 作业执行流程,yarn-client 和 yarn cluster 有什么区别

Spark On Yarn 的优势

1.Spark 支持资源动态共享,运行于 Yarn 的框架都共享一个集中配置好的资源池

2.可以很方便的利用 Yarn 的资源调度特性来做分类·,隔离以及优先级控制负载,拥有更灵活的调度策略

3.Yarn 可以自由地选择 executor 数量

4.Yarn 是唯一支持 Spark 安全的集群管理器,使用 Yarn,Spark 可以运行于 Kerberos Hadoop 之上,在它们进程之间进行安全认证

yarn-client 和 yarn cluster 的异同

1.从广义上讲,yarn-cluster 适用于生产环境。而 yarn-client 适用于交互和调试,也就是希望快速地看到 application 的输出。

2.从深层次的含义讲,yarn-cluster 和 yarn-client 模式的区别其实就是 Application Master 进程的区别,yarn-cluster 模式下,driver 运行在 AM(Application Master)中,它负责向 YARN 申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉 Client,作业会继续在 YARN 上运行。然而 yarn-cluster 模式不适合运行交互类型的作业。而 yarn-client 模式下,Application Master 仅仅向 YARN 请求 executor,Client 会和请求的 container 通信来调度他们工作,也就是说 Client 不能离开。

7、Spark为什么快,Spark SQL 一定比 Hive 快吗

Spark SQL 比 Hadoop Hive 快,是有一定条件的,而且不是 Spark SQL 的引擎比 Hive 的引擎快,相反,Hive 的 HQL 引擎还比 Spark SQL 的引擎更快。其实,关键还是在于 Spark 本身快。

消除了冗余的 HDFS 读写:Hadoop 每次 shuffle 操作后,必须写到磁盘,而 Spark 在 shuffle 后不一定落盘,可以 cache 到内存中,以便迭代时使用。如果操作复杂,很多的 shufle 操作,那么 Hadoop 的读写 IO 时间会大大增加,也是 Hive 更慢的主要原因了。

消除了冗余的 MapReduce 阶段:Hadoop 的 shuffle 操作一定连着完整的 MapReduce 操作,冗余繁琐。而 Spark 基于 RDD 提供了丰富的算子操作,且 reduce 操作产生 shuffle 数据,可以缓存在内存中。

JVM 的优化:Hadoop 每次 MapReduce 操作,启动一个 Task 便会启动一次 JVM,基于进程的操作。而 Spark 每次 MapReduce 操作是基于线程的,只在启动 Executor 是启动一次 JVM,内存的 Task 操作是在线程复用的。每次启动 JVM 的时间可能就需要几秒甚至十几秒,那么当 Task 多了,这个时间 Hadoop 不知道比 Spark 慢了多少。

记住一种反例 考虑一种极端查询:

Select month_id, sum(sales) from T group by month_id;
这个查询只有一次 shuffle 操作,此时,也许 Hive HQL 的运行时间也许比 Spark 还快,反正 shuffle 完了都会落一次盘,或者都不落盘。

结论 Spark 快不是绝对的,但是绝大多数,Spark 都比 Hadoop 计算要快。这主要得益于其对 mapreduce 操作的优化以及对 JVM 使用的优化。

8、RDD, DAG, Stage怎么理解?

DAG Spark 中使用 DAG 对 RDD 的关系进行建模,描述了 RDD 的依赖关系,这种关系也被称之为 lineage(血缘),RDD 的依赖关系使用 Dependency 维护。DAG 在 Spark 中的对应的实现为 DAGScheduler。

RDD 是 Spark 的灵魂,也称为弹性分布式数据集。一个 RDD 代表一个可以被分区的只读数据集。RDD 内部可以有许多分区(partitions),每个分区又拥有大量的记录(records)。

Rdd的五个特征

1.dependencies:建立 RDD 的依赖关系,主要 RDD 之间是宽窄依赖的关系,具有窄依赖关系的 RDD 可以在同一个 stage 中进行计算。

2.partition:一个 RDD 会有若干个分区,分区的大小决定了对这个 RDD 计算的粒度,每个 RDD 的分区的计算都在一个单独的任务中进行。

3.preferedlocations:按照“移动数据不如移动计算”原则,在 Spark 进行任务调度的时候,优先将任务分配到数据块存储的位置。

4.compute:Spark 中的计算都是以分区为基本单位的,compute 函数只是对迭代器进行复合,并不保存单次计算的结果。

5.partitioner: 只存在于(K,V)类型的 RDD 中,非(K,V)类型的 partitioner 的值就是 None。

RDD 的算子主要分成2类,action 和 transformation。这里的算子概念,可以理解成就是对数据集的变换。action 会触发真正的作业提交,而 transformation 算子是不会立即触发作业提交的。每一个 transformation 方法返回一个新的 RDD。只是某些 transformation 比较复杂,会包含多个子 transformation,因而会生成多个 RDD。这就是实际 RDD 个数比我们想象的多一些 的原因。通常是,当遇到 action 算子时会触发一个job的提交,然后反推回去看前面的 transformation 算子,进而形成一张有向无环图。

Stage 在 DAG 中又进行 stage 的划分,划分的依据是依赖是否是 shuffle 的,每个 stage 又可以划分成若干 task。接下来的事情就是 driver 发送 task 到 executor,executor 自己的线程池去执行这些 task,完成之后将结果返回给 driver。action 算子是划分不同 job 的依据。

9、RDD 如何通过记录更新的方式容错

RDD 的容错机制实现分布式数据集容错方法有两种:1. 数据检查点 2. 记录更新。

RDD 采用记录更新的方式:记录所有更新点的成本很高。所以,RDD只支持粗颗粒变换,即只记录单个块(分区)上执行的单个操作,然后创建某个 RDD 的变换序列(血统 lineage)存储下来;变换序列指,每个 RDD 都包含了它是如何由其他 RDD 变换过来的以及如何重建某一块数据的信息。因此 RDD 的容错机制又称“血统”容错。

10、宽依赖、窄依赖怎么理解?

窄依赖指的是每一个 parent RDD 的 partition 最多被子 RDD 的一个 partition 使用(一子一亲)。

宽依赖指的是多个子 RDD 的 partition 会依赖同一个 parent RDD的 partition(多子一亲)。

RDD 作为数据结构,本质上是一个只读的分区记录集合。一个 RDD 可以包含多个分区,每个分区就是一个 dataset 片段。RDD 可以相互依赖。

首先,窄依赖可以支持在同一个 cluster node上,以 pipeline 形式执行多条命令(也叫同一个 stage 的操作),例如在执行了 map 后,紧接着执行 filter。相反,宽依赖需要所有的父分区都是可用的,可能还需要调用类似 MapReduce 之类的操作进行跨节点传递。

其次,则是从失败恢复的角度考虑。窄依赖的失败恢复更有效,因为它只需要重新计算丢失的 parent partition 即可,而且可以并行地在不同节点进行重计算(一台机器太慢就会分配到多个节点进行),相反,宽依赖牵涉 RDD 各级的多个 parent partition。

11、Job 和 Task 怎么理解

Job:Spark 的 Job 来源于用户执行 action 操作(这是 Spark 中实际意义的 Job),就是从 RDD 中获取结果的操作,而不是将一个 RDD 转换成另一个 RDD 的 transformation 操作。

Task:一个 Stage 内,最终的 RDD 有多少个 partition,就会产生多少个 task。看一看图就明白了,可以数一数每个 Stage 有多少个 Task。

12、Spark 血统的概念

RDD 的 lineage 记录的是粗颗粒度的特定数据转换(transformation)操作(filter, map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过 lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。

13、任务的概念

包含很多 task 的并行计算,可以认为是 Spark RDD 里面的 action,每个 action 的计算会生成一个 job。用户提交的 job 会提交给 DAGScheduler,job 会被分解成 Stage 和 Task。

14、容错方法

Spark 选择记录更新的方式。但是,如果更新粒度太细太多,那么记录更新成本也不低。因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建 RDD 的一系列变换序列(每个 RDD 都包含了他是如何由其他 RDD 变换过来的以及如何重建某一块数据的信息。因此 RDD 的容错机制又称血统容错)记录下来,以便恢复丢失的分区。lineage本质上很类似于数据库中的重做日志(Redo Log),只不过这个重做日志粒度很大,是对全局数据做同样的重做进而恢复数据。

相比其他系统的细颗粒度的内存数据更新级别的备份或者 LOG 机制,RDD 的 lineage 记录的是粗颗粒度的特定数据 transformation 操作行为。当这个 RDD 的部分分区数据丢失时,它可以通过 lineage 获取足够的信息来重新运算和恢复丢失的数据分区。

15、Spark 粗粒度和细粒度

Spark 中,每个 application 对应一个 SparkContext。对于 SparkContext 之间的调度关系,取决于 Spark 的运行模式。对 Standalone 模式而言,Spark Master 节点先计算集群内的计算资源能否满足等待队列中的应用对内存和 CPU 资源的需求,如果可以,则 Master 创建 Spark Driver,启动应用的执行。宏观上来讲,这种对应用的调度类似于 FIFO 策略。在 Mesos 和 Yarn 模式下,底层的资源调度系统的调度策略都是由 Mesos 和 Yarn 决定的。具体分类描述如下:

Standalone 模式默认以用户提交 Applicaiton 的顺序来调度,即 FIFO 策略。每个应用执行时独占所有资源。如果有多个用户要共享集群资源,则可以使用参数 spark.cores.max 来配置应用在集群中可以使用的最大 CPU 核的数量。如果不配置,则采用默认参数 spark.deploy.defaultCore 的值来确定。

Mesos 模式如果在 Mesos 上运行 Spark,用户想要静态配置资源的话,可以设置 spark.mesos.coarse 为 true,这样 Mesos 变为粗粒度调度模式。然后可以设置 spark.cores.max 指定集群中可以使用的最大核数,与上面 Standalone 模式类似。同时,在 Mesos 模式下,用户还可以设置参数 spark.executor.memory 来配置每个 executor 的内存使用量。如果想使 Mesos 在细粒度模式下运行,可以通过 mesos:// 设置动态共享 CPU core 的执行模式。在这种模式下,应用不执行时的空闲 CPU 资源得以被其他用户使用,提升了 CPU 使用率。

16、Spark优越性

一、Spark 的5大优势

1.更高的性能。因为数据被加载到集群主机的分布式内存中。数据可以被快速的转换迭代,并缓存用以后续的频繁访问需求。在数据全部加载到内存的情况下,Spark可以比Hadoop快100倍,在内存不够存放所有数据的情况下快hadoop10倍。

2.通过建立在Java,Scala,Python,SQL(应对交互式查询)的标准API以方便各行各业使用,同时还含有大量开箱即用的机器学习库。

3.与现有Hadoop 1和2.x(YARN)生态兼容,因此机构可以无缝迁移。

4.方便下载和安装。方便的shell(REPL: Read-Eval-Print-Loop)可以对API进行交互式的学习。

5.借助高等级的架构提高生产力,从而可以讲精力放到计算上。

二、MapReduce与Spark相比,有哪些异同点:

1、基本原理上:(1) MapReduce:基于磁盘的大数据批量处理系统 (2)Spark:基于RDD(弹性分布式数据集)数据处理,显示将RDD数据存储到磁盘和内存中。

2、模型上:(1) MapReduce可以处理超大规模的数据,适合日志分析挖掘等较少的迭代的长任务需求,结合了数据的分布式的计算。(2) Spark:适合数据的挖掘,机器学习等多轮迭代式计算任务。

17、Transformation和action是什么?区别?举几个常用方法

RDD 创建后就可以在 RDD 上进行数据处理。RDD 支持两种操作:
1.转换(transformation): 即从现有的数据集创建一个新的数据集
2. 动作(action): 即在数据集上进行计算后,返回一个值给 Driver 程序

RDD 的转化操作是返回一个新的 RDD 的操作,比如 map() 和 filter() ,而行动操作则是向驱动器程序返回结果或把结果写入外部系统的操作,会触发实际的计算,比如 count() 和 first() 。Spark 对待转化操作和行动操作的方式很不一样,因此理解你正在进行的操作的类型是很重要的。如果对于一个特定的函数是属于转化操作还是行动操作感到困惑,你可以看看它的返回值类型:转化操作返回的是 RDD,而行动操作返回的是其他的数据类型。

RDD 中所有的 Transformation 都是惰性的,也就是说,它们并不会直接计算结果。相反的它们只是记住了这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给 Driver 的 Action 时,这些 Transformation 才会真正运行。

18、Spark作业提交流程是怎么样的

spark-submit 提交代码,执行 new SparkContext(),在 SparkContext 里构造 DAGScheduler 和 TaskScheduler。

TaskScheduler 会通过后台的一个进程,连接 Master,向 Master 注册 Application。

Master 接收到 Application 请求后,会使用相应的资源调度算法,在 Worker 上为这个 Application 启动多个 Executer。

Executor 启动后,会自己反向注册到 TaskScheduler 中。所有 Executor 都注册到 Driver 上之后,SparkContext 结束初始化,接下来往下执行我们自己的代码。

每执行到一个 Action,就会创建一个 Job。Job 会提交给 DAGScheduler。

DAGScheduler 会将 Job划分为多个 stage,然后每个 stage 创建一个 TaskSet。

TaskScheduler 会把每一个 TaskSet 里的 Task,提交到 Executor 上执行。

Executor 上有线程池,每接收到一个 Task,就用 TaskRunner 封装,然后从线程池里取出一个线程执行这个 task。(TaskRunner 将我们编写的代码,拷贝,反序列化,执行 Task,每个 Task 执行 RDD 里的一个 partition)

19、Spark streamning工作流程是怎么样的,和Storm比有什么区别

Spark Streaming 与 Storm 都可以用于进行实时流计算。但是他们两者的区别是非常大的。其中区别之一,就是,Spark Streaming 和 Storm 的计算模型完全不一样,Spark Streaming 是基于 RDD 的,因此需要将一小段时间内的,比如1秒内的数据,收集起来,作为一个 RDD,然后再针对这个 batch 的数据进行处理。而 Storm 却可以做到每来一条数据,都可以立即进行处理和计算。因此,Spark Streaming 实际上严格意义上来说,只能称作准实时的流计算框架;而 Storm 是真正意义上的实时计算框架。此外,Storm 支持的一项高级特性,是 Spark Streaming 暂时不具备的,即 Storm 支持在分布式流式计算程序(Topology)在运行过程中,可以动态地调整并行度,从而动态提高并发处理能力。而 Spark Streaming 是无法动态调整并行度的。但是 Spark Streaming 也有其优点,首先 Spark Streaming 由于是基于 batch 进行处理的,因此相较于 Storm 基于单条数据进行处理,具有数倍甚至数十倍的吞吐量。此外,Spark Streaming 由于也身处于 Spark 生态圈内,因此Spark Streaming可以与Spark Core、Spark SQL,甚至是Spark MLlib、Spark GraphX进行无缝整合。流式处理完的数据,可以立即进行各种map、reduce转换操作,可以立即使用sql进行查询,甚至可以立即使用machine learning或者图计算算法进行处理。这种一站式的大数据处理功能和优势,是 Storm 无法匹敌的。因此,综合上述来看,通常在对实时性要求特别高,而且实时数据量不稳定,比如在白天有高峰期的情况下,可以选择使用 Storm。但是如果是对实时性要求一般,允许1秒的准实时处理,而且不要求动态调整并行度的话,选择Spark Streaming是更好的选择。

20、Spark 机器学习和 Spark 图计算接触过没有,举例说明你用它做过什么?

Spark 提供了很多机器学习库,我们只需要填入数据,设置参数就可以用了。使用起来非常方便。另外一方面,由于它把所有的东西都写到了内部,我们无法修改其实现过程。要想修改里面的某个环节,还的修改源码,重新编译。比如 kmeans 算法,如果没有特殊需求,很方便。但是spark内部使用的两个向量间的距离是欧式距离。如果你想改为余弦或者马氏距离,就的重新编译源码了。Spark 里面的机器学习库都是一些经典的算法,这些代码网上也好找。这些代码使用起来叫麻烦,但是很灵活。Spark 有一个很大的优势,那就是 RDD。模型的训练完全是并行的。

Spark 的 ML 和 MLLib 两个包区别和联系

技术角度上,面向的数据集类型不一样:ML 的 API 是面向 Dataset 的(Dataframe 是 Dataset 的子集,也就是 Dataset[Row]), mllib 是面对 RDD 的。Dataset 和 RDD 有啥不一样呢?Dataset 的底端是 RDD。Dataset 对 RDD 进行了更深一层的优化,比如说有 sql 语言类似的黑魔法,Dataset 支持静态类型分析所以在 compile time 就能报错,各种 combinators(map,foreach 等)性能会更好,等等。

编程过程上,构建机器学习算法的过程不一样:ML 提倡使用 pipelines,把数据想成水,水从管道的一段流入,从另一端流出。ML 是1.4比 Mllib 更高抽象的库,它解决如果简洁的设计一个机器学习工作流的问题,而不是具体的某种机器学习算法。未来这两个库会并行发展。

21、Spark RDD是怎么容错的,基本原理是什么?

一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新。

面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源。

因此,Spark选择记录更新的方式。但是,如果更新粒度太细太多,那么记录更新成本也不低。因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息。因此RDD的容错机制又称“血统(Lineage)”容错)记录下来,以便恢复丢失的分区。

Lineage本质上很类似于数据库中的重做日志(Redo Log),只不过这个重做日志粒度很大,是对全局数据做同样的重做进而恢复数据。

22、为什么要用Yarn来部署Spark?

因为 Yarn 支持动态资源配置。Standalone 模式只支持简单的固定资源分配策略,每个任务固定数量的 core,各 Job 按顺序依次分配在资源,资源不够的时候就排队。这种模式比较适合单用户的情况,多用户的情境下,会有可能有些用户的任务得不到资源。

Yarn 作为通用的种子资源调度平台,除了 Spark 提供调度服务之外,还可以为其他系统提供调度,如 Hadoop MapReduce, Hive 等。

23、说说yarn-cluster和yarn-client的异同点。

cluster 模式会在集群的某个节点上为 Spark 程序启动一个称为 Master 的进程,然后 Driver 程序会运行正在这个 Master 进程内部,由这种进程来启动 Driver 程序,客户端完成提交的步骤后就可以退出,不需要等待 Spark 程序运行结束,这是四一职中适合生产环境的运行方式

client 模式也有一个 Master 进程,但是 Driver 程序不会运行在这个 Master 进程内部,而是运行在本地,只是通过 Master 来申请资源,直到运行结束,这种模式非常适合需要交互的计算。显然 Driver 在 client 模式下会对本地资源造成一定的压力。

24、解释一下 groupByKey, reduceByKey 还有 reduceByKeyLocally

Spark RDD 算子

25、说说 persist() 和 cache() 的异同

RDD的cache和persist的区别

cache()是persist()的简化方式,调用persist的无参版本,也就是调用persist(StorageLevel.MEMORY_ONLY),cache只有一个默认的缓存级别MEMORY_ONLY,即将数据持久化到内存中,而persist可以通过传递一个 StorageLevel 对象来设置缓存的存储级别。

DataFrame的cache和persist的区别

cache()依然调用的persist(),但是persist调用cacheQuery,而cacheQuery的默认存储级别为MEMORY_AND_DISK,这点和rdd是不一样的。

27、说说map和mapPartitions的区别

map 中的 func 作用的是 RDD 中每一个元素,而 mapPartitioons 中的 func 作用的对象是 RDD 的一整个分区。所以 func 的类型是 Iterator => Iterator,其中 T 是输入 RDD 的元素类型。

28、groupByKey和reduceByKey是属于Transformation还是 Action?

前者,因为 Action 输出的不再是 RDD 了,也就意味着输出不是分布式的,而是回送到 Driver 程序。以上两种操作都是返回 RDD,所以应该属于 Transformation。

29、说说Spark支持的3种集群管理器

Standalone 模式:资源管理器是 Master 节点,调度策略相对单一,只支持先进先出模式。

Hadoop Yarn 模式:资源管理器是 Yarn 集群,主要用来管理资源。Yarn 支持动态资源的管理,还可以调度其他实现了 Yarn 调度接口的集群计算,非常适用于多个集群同时部署的场景,是目前最流行的一种资源管理系统。

Apache Mesos:Mesos 是专门用于分布式系统资源管理的开源系统,与 Yarn 一样是 C++ 开发,可以对集群中的资源做弹性管理。

30、说说Worker和Excutor的异同

Worker 是指每个及节点上启动的一个进程,负责管理本节点,jps 可以看到 Worker 进程在运行。Excutor 每个Spark 程序在每个节点上启动的一个进程,专属于一个 Spark 程序,与 Spark 程序有相同的生命周期,负责 Spark 在节点上启动的 Task,管理内存和磁盘。如果一个节点上有多个 Spark 程序,那么相应就会启动多个执行器。

31、说说Spark提供的两种共享变量

Spark 程序的大部分操作都是 RDD 操作,通过传入函数给 RDD 操作函数来计算,这些函数在不同的节点上并发执行,内部的变量有不同的作用域,不能相互访问,有些情况下不太方便。

广播变量,是一个只读对象,在所有节点上都有一份缓存,创建方法是 SparkContext.broadcast()。创建之后再更新它的值是没有意义的,一般用 val 来修改定义。

计数器,只能增加,可以用计数或求和,支持自定义类型。创建方法是 SparkContext.accumulator(V, name)。只有 Driver 程序可以读这个计算器的变量,RDD 操作中读取计数器变量是无意义的。

以上两种类型都是 Spark 的共享变量。

32、说说检查点的意义

在容错机制中,如果一个节点死机了,而且运算窄依赖,则只要把丢失的父RDD分区重算即可,不依赖于其他节点。而宽依赖需要父RDD的所有分区都存在,重算就很昂贵了。可以这样理解开销的经济与否:在窄依赖中,在子RDD的分区丢失、重算父RDD分区时,父RDD相应分区的所有数据都是子RDD分区的数据,并不存在冗余计算。在宽依赖情况下,丢失一个子RDD分区重算的每个父RDD的每个分区的所有数据并不是都给丢失的子RDD分区用的,会有一部分数据相当于对应的是未丢失的子RDD分区中需要的数据,这样就会产生冗余计算开销,这也是宽依赖开销更大的原因。因此如果使用Checkpoint算子来做检查点,不仅要考虑Lineage是否足够长,也要考虑是否有宽依赖,对宽依赖加Checkpoint是最物有所值的。

33、说说Spark的高可用和容错

Spark 应用程序的高可用性主要包含两个部分:集群环境的高可用以及应用程序的容错特性;集群环境的高可用,主要由集群框架来控制,比如 spark on yarn 模式下的 ResourceManager 的 HA、Spark Standalone 模式下的 Master HA 等特性的设置保障集群的高可用性;至于应用程序的容错需要考虑应用的各个组成部分的容错。

spark 应用程序执行过程中,一般存在以下失败的情况:

Driver 集成宕机:Driver 运行机器宕机、Driver 程序运行过程中异常导致宕机
Executor 进程宕机:Executor 所在的work 宕机,Exector 和 Driver 通信超时
Task 执行失败:task 执行过程发生异常导致失败
Driver 进程宕机解决方案:

监控机器机器是否存活,如果机器宕机,重启服务机器和 spark 集群
通过 spark job 的 history 服务监控应用是否执行成功,如果执行失败,通过开发人员重启服务即可
SparkStreaming 中,重启spark应用后,可通过 checkpoint 进行job数据恢复
Executor 宕机解决方案:选择一个work 节点重启Executor 进程,Driver 重新分配任务

Task 执行失败解决方案:

Spark 会自动进行 task 重试机制,如果某个 task 失败重试次数超过3次(spark.task.maxFailures)后,当前job 执行失败;local 模式默认不启用 task 重试机制
Task 数据恢复/重新运行的机制实际上是 RDD 容错机制,即 Lineage 机制,RDD的 Lineage 机制记录的是粗粒度的特定数据的 Transformation 操作行为。当这个 RDD 的部分数据丢失时,它可以通过 lineage 获取足够的信息来重新运算和恢复丢失的数据分区;该机制体现在RDD上就是RDD依赖特性
如果 rdd 的 lineage 的生命线特别长,此时某些 task 执行失败的恢复成本就会比较高,那么可以采用检查点或缓存的方式将数据冗余下来,当检查点/缓存点之后的rdd的task出现异常的时候,可以直接从检查点重新构建lineage,可以减少执行开销。

34、解释一下Spark Master的选举过程

Master作为Spark standalone模式的核心,如果Master出现异常,那么集群就不能正常工作。所以Spark会从Standby中选择一个节点作为Master.

Spark支持以下几种策略,这种策略可以通过配置文件spark-env.sh配置 spark.deploy.recoveryMode

ZOOKEEPER: 集群元数据持久化到zookeeper,当master出现异常的时候,zookeeper会通过选举机制选举出新的Master,新的Master接管集群时需要从zookeeper获取持久化信息,并根据这些信息恢复集群状态
FILESYSTEM: 集群的元数据持久化到文件系统,当Master出现异常的时候,只要在该机器上重启Master,启动后的Master获取持久化信息并根据持久化信息恢复集群状态
CUSTOM: 自定义恢复模式,实现StandaloneRecoveryModeFactory抽象类进行实现,并把该类配置到配置文件,当Master出现异常,会根据用户自定义的方式进行恢复集群状况
NONE: 不持久化集群元数据,当Master出现异常时,新启动的Master不进行恢复集群状态

35、说说Spark如何实现序列化组件的

Spark通过两种方式来创建序列化器

Java序列化

在默认情况下,Spark 采用 Java的 ObjectOutputStream 序列化一个对象。该方式适用于所有实现了 java.io.Serializable 的类。通过继承 java.io.Externalizable,你能进一步控制序列化的性能。Java序列化非常灵活,但是速度较慢,在某些情况下序列化的结果也比较大。

Kryo序列化

Spark 也能使用 Kryo(版本2)序列化对象。Kryo 不但速度极快,而且产生的结果更为紧凑(通常能提高10倍)。Kryo 的缺点是不支持所有类型,为了更好的性能,你需要提前注册程序中所使用的类(class)。

Java 的序列化比较简单,就和前面的一样,下面主要介绍Kryo序列化的使用。

36、说说对Master的理解

Master 是 local-cluster 部署模式和 Standalone 部署模式中,整个 Spark 集群最为重要的组件之一,分担了对整个集群资源的管理和分配的工作。

local-cluser 下,Master 作为 JVM 进程的对象启动,而在 Standalone 模式下,就是单独的进程启动。

37、说说什么是窗口间隔和滑动间隔

也叫 WriteAheadLogs,通常被用于数据库和文件系统中,保证数据操作的持久性。预写日志通常是先将操作写入到一个持久可靠的日志文件中,然后才对数据施加该操作,当加入施加该操作中出现异常,可以通过读取日志文件并重新施加该操作,从而恢复系统。

当 WAL 开启后,所有收到的数据同时保存到了容错文件系统的日志文件中,当 Spark Streaming 失败,这些接受到的数据也不会丢失。另外,接收数据的正确性只在数据被预写到日志以后接收器才会确认。已经缓存但还没有保存的数据可以在 Driver 重新启动之后由数据源再发送一次(经常问)。

这两个机制保证了数据的零丢失,即所有的数据要么从日志中恢复,要么由数据源重发。

38、Spark Streaming小文件问题

使用 Spark Streaming 时,如果实时计算结果要写入到 HDFS,那么不可避免的会遇到一个问题,那就是在默认情况下会产生非常多的小文件,这是由 Spark Streaming 的微批处理模式和 DStream(RDD) 的分布式(partition)特性导致的,Spark Streaming 为每个 Partition 启动一个独立的线程(一个 task/partition 一个线程)来处理数据,一旦文件输出到 HDFS,那么这个文件流就关闭了,再来一个 batch 的 parttition 任务,就再使用一个新的文件流,那么假设,一个 batch 为10s,每个输出的 DStream 有32个 partition,那么一个小时产生的文件数将会达到(3600/10)*32=11520个之多。众多小文件带来的结果是有大量的文件元信息,比如文件的 location、文件大小、block number 等需要 NameNode 来维护,NameNode 会因此鸭梨山大。不管是什么格式的文件,parquet、text、JSON 或者 Avro,都会遇到这种小文件问题,这里讨论几种处理 Spark Streaming 小文件的典型方法。

增加 batch 大小:这种方法很容易理解,batch 越大,从外部接收的 event 就越多,内存积累的数据也就越多,那么输出的文件数也就会变少,比如上边的时间从10s增加为100s,那么一个小时的文件数量就会减少到1152个。但别高兴太早,实时业务能等那么久吗,本来人家10s看到结果更新一次,现在要等快两分钟,是人都会骂娘。所以这种方法适用的场景是消息实时到达,但不想挤压在一起处理,因为挤压在一起处理的话,批处理任务在干等,这时就可以采用这种方法。

Coalesce大法好:文章开头讲了,小文件的基数是 batch_number * partition_number,而第一种方法是减少 batch_number,那么这种方法就是减少 partition_number 了,这个 api 不细说,就是减少初始的分区个数。看过 spark 源码的童鞋都知道,对于窄依赖,一个子 RDD 的 partition 规则继承父 RDD,对于宽依赖(就是那些个xxxByKey操作),如果没有特殊指定分区个数,也继承自父 rdd。那么初始的 SourceDstream 是几个 partiion,最终的输出就是几个 partition。所以 Coalesce 大法的好处就是,可以在最终要输出的时候,来减少一把 partition 个数。但是这个方法的缺点也很明显,本来是32个线程在写256M数据,现在可能变成了4个线程在写256M数据,而没有写完成这256M数据,这个 batch 是不算结束的。那么一个 batch 的处理时延必定增长,batch 挤压会逐渐增大。

Spark Streaming 外部来处理:我们既然把数据输出到 hdfs,那么说明肯定是要用 Hive 或者 Spark Sql 这样的“sql on hadoop”系统类进一步进行数据分析,而这些表一般都是按照半小时或者一小时、一天,这样来分区的(注意不要和 Spark Streaming 的分区混淆,这里的分区,是用来做分区裁剪优化的),那么我们可以考虑在 Spark Streaming 外再启动定时的批处理任务来合并 Spark Streaming 产生的小文件。这种方法不是很直接,但是却比较有用,“性价比”较高,唯一要注意的是,批处理的合并任务在时间切割上要把握好,搞不好就可能会去合并一个还在写入的 Spark Streaming 小文件。

自己调用 foreach 去 append:Spark Streaming 提供的 foreach 这个 outout 类 api (一种 Action 操作),可以让我们自定义输出计算结果的方法。那么我们其实也可以利用这个特性,那就是每个 batch 在要写文件时,并不是去生成一个新的文件流,而是把之前的文件打开。考虑这种方法的可行性,首先,HDFS 上的文件不支持修改,但是很多都支持追加,那么每个 batch 的每个 partition 就对应一个输出文件,每次都去追加这个 partition 对应的输出文件,这样也可以实现减少文件数量的目的。这种方法要注意的就是不能无限制的追加,当判断一个文件已经达到某一个阈值时,就要产生一个新的文件进行追加了。所以大概就是一直32个文件。

39、Spark的UDF?

因为目前 Spark SQL 本身支持的函数有限,一些常用的函数都没有,比如 len, concat…etc 但是使用 UDF 来自己实现根据业务需要的功能是非常方便的。Spark SQL UDF 其实是一个 Scala 函数,被 catalyst 封装成一个 Expression 结点,最后通过 eval 方法计根据当前 Row 计算 UDF 的结果。UDF 对表中的单行进行转换,以便为每行生成单个对应的输出值。例如,大多数 SQL 环境提供 UPPER 函数返回作为输入提供的字符串的大写版本。

用户自定义函数可以在 Spark SQL 中定义和注册为 UDF,并且可以关联别名,这个别名可以在后面的 SQL 查询中使用。作为一个简单的示例,我们将定义一个 UDF 来将以下 JSON 数据中的温度从摄氏度(degrees Celsius)转换为华氏度(degrees Fahrenheit)。

40、Mesos下粗粒度和细粒度对比?

粗粒度运行模式:Spark 应用程序在注册到 Mesos 时会分配对应系统资源,在执行过程中由 SparkContext 和 Executor 直接交互,该模式优点是由于资源长期持有减少了资源调度的时间开销,缺点是该模式下 Mesos 无法感知资源使用的变化,容易造成系统资源的闲置,无法被 Mesos 其他框架使用,造成资源浪费。
细粒度的运行模式:Spark 应用程序是以单个任务的粒度发送到 Mesos 中执行,在执行过程中 SparkContext 并不能和 Executor 直接交互,而是由 Mesos Master 进行统一的调度管理,这样能够根据整个 Mesos 集群资源使用的情况动态调整。该模式的优点是系统资源能够得到充分利用,缺点是该模式中每个人物都需要从 Mesos 获取资源,调度延迟较大,对于 Mesos Master 开销较大。

41、Spark Local和Standalone有什么区别

Spark一共有5种运行模式:Local,Standalone,Yarn-Cluster,Yarn-Client 和 Mesos。

Local:Local 模式即单机模式,如果在命令语句中不加任何配置,则默认是 Local 模式,在本地运行。这也是部署、设置最简单的一种模式,所有的 Spark 进程都运行在一台机器或一个虚拟机上面。

Standalone:Standalone 是 Spark 自身实现的资源调度框架。如果我们只使用 Spark 进行大数据计算,不使用其他的计算框架(如MapReduce或者Storm)时,就采用 Standalone 模式就够了,尤其是单用户的情况下。Standalone 模式是 Spark 实现的资源调度框架,其主要的节点有 Client 节点、Master 节点和 Worker 节点。其中 Driver 既可以运行在 Master 节点上中,也可以运行在本地 Client 端。当用 spark-shell 交互式工具提交 Spark 的 Job 时,Driver 在 Master 节点上运行;当使用 spark-submit 工具提交 Job 或者在 Eclipse、IDEA 等开发平台上使用 new SparkConf.setManager(“spark://master:7077”) 方式运行 Spark 任务时,Driver 是运行在本地 Client 端上的。

Standalone 模式的部署比较繁琐,需要把 Spark 的部署包安装到每一台节点机器上,并且部署的目录也必须相同,而且需要 Master 节点和其他节点实现 SSH 无密码登录。启动时,需要先启动 Spark 的 Master 和 Slave 节点。提交命令类似于:

./bin/spark-submit
–class org.apache.spark.examples.SparkPi
–master spark://Oscar-2.local:7077
/tmp/spark-2.2.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.2.0.jar
100
其中 master:7077是 Spark 的 Master 节点的主机名和端口号。当然集群是需要提前启动。

42、说说SparkContext和SparkSession有什么区别?

Application: 用户编写的 Spark 应用程序,Driver 即运行上述 Application 的 main() 函数并且创建 SparkContext。Application 也叫应用。

SparkContext: 整个应用的上下文,控制应用的生命周期。

RDD: 不可变的数据集合,可由 SparkContext 创建,是 Spark 的基本计算单元。

SparkSession: 可以由上节图中看出,Application、SparkSession、SparkContext、RDD之间具有包含关系,并且前三者是1对1的关系。SparkSession 是 Spark 2.0 版本引入的新入口,在这之前,创建一个 Application 对应的上下文是这样的:

//set up the spark configuration and create contexts
val sparkConf = new SparkConf().setAppName(“SparkSessionZipsExample”).setMaster(“local”)
// your handle to SparkContext to access other context like SQLContext
val sc = new SparkContext(sparkConf).set(“spark.some.config.option”, “some-value”)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

47、简单写一个WordCount程序

sc.textFile("/Users/runzhliu/workspace/spark-2.2.1-bin-hadoop2.7/README.md")
.flatMap(_.split(" "))
.map(x => (x, 1))
.reduceByKey(_ + _)
.map(x => (x._2, x._1))
.sortByKey(false)
.map(x => (x._2, x._1))
.take(10)

48、说说Yarn-cluster的运行阶段

在 Yarn-cluset 模式下,当用户向 Yarn 提交一个应用程序后,Yarn 将两个阶段运行该应用程序:

第一阶段是把 Spark 的 Driver 作为一个 Application Master 在 Yarn 集群中先启动。

第二阶段是由 Application Master 创建应用程序,然后为它向 Resource Manager 申请资源,并启动 Executor 来运行任务集,同时监控它的整个过程,直到运行介绍结束。

49、Mesos粗细度对比

Mesos 粗粒度运行模式中,Spark 程序在注册到 Mesos 的时候会分配对应系统资源,在执行过程中由 SparkContext 和 Executor 直接进行交互。该模式优点是由于资源长期持有,减少了资源调度的时间开销,缺点是该模式之下,Mesos 无法感知资源使用的变化,容易造成资源的闲置,无法被 Mesos 其他框架所使用,从而造成资源浪费。

而在细粒度运行模式下,Spark 应用程序是以单个任务的粒度发送到 Mesos 中执行,在执行过程中 SparkContext 并不能与 Executor 直接进行交互,而是由 Mesos Master 进行统一的调度管理,这样能够根据整个 Mesos 集群资源使用的情况动态调整。该模式的优点是系统资源能够得到充分利用,缺点是该模式中每个任务都需要从 Mesos 获取资源,调度延迟比较大,对于 Mesos 开销比较大。

50、说说Standalone模式下运行Spark程序的大概流程

Standalone 模式分别由客户端、Master 节点和 Worker 节点组成。在 Spark Shell 提交计算代码的时候,所在机器作为客户端启动应用程序,然后向 Master 注册应用程序,由 Master 通知 Worker 节点启动 Executor,Executor 启动之后向客户端的 Driver 注册,最后由 Driver 发送执行任务给 Executor 并监控任务执行情况。该程序代码中,在触发计算行数动作之前,需要设置缓存代码,这样在执行计算行数行为的时候进行缓存数据,缓存后再运行计算行数。

51、如何区分 Appliction(应用程序)还有 Driver(驱动程序)

Application 是指用户编写的 Spark 应用程序,包含驱动程序 Driver 和分布在集群中多个节点上运行的 Executor 代码,在执行过程之中由一个或多个做作业组成。

Driver 是 Spark 中的 Driver 即运行上述 Application 的 main 函数并且创建 SparkContext,其中创建 SparkContext 的目的是为了准备 Spark 应用程序的运行环境。在 Spark 中由 sc 负责与 ClusterManager 通信,进行资源的申请,任务的分配和监控等。当 Executor 部分运行完毕后,Driver 负责把 sc 关闭,通常 Driver 会拿 SparkContext 来代表。

52、介绍一下 Spark 通信的启动方式

Spark 启动过程主要是 Master 与 Worker 之间的通信,首先由 Worker 节点向 Master 发送注册消息,然后 Master 处理完毕后,返回注册成功消息或失败消息,如果成功注册,那么 Worker 就会定时发送心跳消息给 Master。

53、介绍一下 Spark 运行时候的消息通信

用户提交应用程序时,应用程序的 SparkContext 会向 Master 发送应用注册消息,并由 Master 给该应用分配 Executor,Excecutor 启动之后,Executor 会向 SparkContext 发送注册成功消息。当 SparkContext 的 RDD 触发行动操作之后,将创建 RDD 的 DAG。通过 DAGScheduler 进行划分 Stage 并把 Stage 转化为 TaskSet,接着 TaskScheduler 向注册的 Executor 发送执行消息,Executor 接收到任务消息后启动并运行。最后当所有任务运行时候,由 Driver 处理结果并回收资源。

54、解释一下Stage

每个作业会因为 RDD 之间的依赖关系拆分成多组任务集合,称为调度阶段,也叫做任务集。调度阶段的划分由 DAGScheduler 划分,调度阶段有 Shuffle Map Stage 和 Result Stage 两种。

55、描述一下Worker异常的情况

Spark 独立运行模式 Standalone 采用的是 Master/Slave 的结构,其中 Slave 是由 Worker 来担任的,在运行的时候会发送心跳给 Master,让 Master 知道 Worker 的实时状态,另一方面,Master 也会检测注册的 Worker 是否超时,因为在集群运行的过程中,可能由于机器宕机或者进程被杀死等原因造成 Worker 异常退出。

56、描述一下Master异常的情况

Master 出现异常的时候,会有几种情况,而在独立运行模式 Standalone 中,Spark 支持几种策略,来让 Standby Master 来接管集群。主要配置的地方在于 spark-env.sh 文件中。配置项是 spark.deploy.recoveryMode 进行设置,默认是 None。

ZOOKEEPER:集群元数据持久化到 Zookeeper 中,当 Master 出现异常,ZK 通过选举机制选举新的 Master,新的 Master 接管的时候只要从 ZK 获取持久化信息并根据这些信息恢复集群状态。StandBy 的 Master 随时候命的。

FILESYSTEM:集群元数据持久化到本地文件系统中,当 Master 出现异常的时候,只要在该机器上重新启动 Master,启动后新的 Master 获取持久化信息并根据这些信息恢复集群的状态。

CUSTOM:自定义恢复方式,对 StandaloneRecoveryModeFactory 抽象类进行实现并把该类配置到系统中,当 Master 出现异常的时候,会根据用户自定义的方式进行恢复集群状态。

NONE:不持久化集群的元数据,当出现异常的是,新启动 Master 不进行信息恢复集群状态,而是直接接管集群。

57、Spark的存储体系

简单来讲,Spark存储体系是各个Driver与Executor实例中的BlockManager所组成的;但是从一个整体来看,把各个节点的BlockManager看成存储体系的一部分,那存储体系就有了更多衍生的内容,比如块传输服务、map任务输出跟踪器、Shuffle管理器等。

58、简述Spark Streaming

具有高吞吐量和容错能力强的特点,输入源有很多,如 Kafka, Flume, Twitter 等待。

关于流式计算的做法,如果按照传统工具的做法把数据存储到数据库中再进行计算,这样是无法做到实时的,而完全把数据放到内存中计算,万一宕机、断电了,数据也就丢失了。

因此 Spark 流式计算引入了检查点 CheckPoint 和日志,以便能够从中恢复计算结果。而本质上 Spark Streaming 是接收实时输入数据流并把他们按批次划分,然后交给 Spark 计算引擎处理生成按照批次划分的结果流。

60、说说Spark的特点,相对于MR来说

减少磁盘 I/O,MR 会把 map 端将中间输出和结果存储在磁盘中,reduce 端又需要从磁盘读写中间结果,势必造成磁盘 I/O 称为瓶颈。Spark 允许将 map 端的中间结果输出和结果存储在内存中,reduce 端在拉取中间结果的时候避免了大量的磁盘 I/O。

增加并行度,由于把中间结果写到磁盘与从磁盘读取中间结果属于不同的缓解,Hadoop 将他们简单地通过串行执行衔接起来,Spark 则把不同的环节抽象成为 Stage,允许多个 Stage 既可以串行又可以并行执行。

避免重新计算,当 Stage 中某个分区的 Task 执行失败后,会重新对此 Stage 调度,但在重新调度的时候会过滤已经执行成功的分区任务,所以不会造成重复计算和资源浪费。

可选的 Shuffle 排序,MR 在 Shuffle 之前有着固定的排序操作,而 Spark 则可以根据不同场景选择在 map 端排序还是 reduce 排序。

灵活的内存管理策略,Spark 将内存分为堆上的存储内存、堆外的存储内存,堆上的执行内存,堆外的执行内存4个部分。

62、Task和Stage的分类

Task 指具体的执行任务,一个 Job 在每个 Stage 内都会按照 RDD 的 Partition 数量,创建多个 Task,Task 分为 ShuffleMapTask 和 ResultTask 两种。ShuffleMapStage 中的 Task 为 ShuffleMapTask,而 ResultStage 中的 Task 为 ResultTask。ShuffleMapTask 和 ResultTask 类似于 Hadoop 中的 Map 任务和 Reduce 任务。

63、Spark的编程模型

1.创建应用程序 SparkContext  

2.创建RDD,有两种方式,方式一:输入算子,即读取外部存储创建RDD,SparkHadoop完全兼容,所以对Hadoop所支持的文件类型或者数据库类型,Spark同样支持。方式二:从集合创建RDD  

3.Transformation 算子,这种变换并不触发提交作业,完成作业中间过程处理。也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触发运算。  

4.Action 算子,这类算子会触发 SparkContext 提交 Job 作业。并将数据输出 Spark系统。  

5.保存结果  

6.关闭应用程序  

64、Spark的计算模型

用户程序对 RDD 通过多个函数进行操作,将 RDD 进行转换。

Block-Manager 管理 RDD 的物理分区,每个 Block 就是节点上对应的一个数据块,可以存储在内存或者磁盘。

而 RDD 中的 partition 是一个逻辑数据块,对应相应的物理块 Block。

本质上一个 RDD 在代码中相当于是数据的一个元数据结构,存储着数据分区及其逻辑结构映射关系,存储着 RDD 之前的依赖转换关系。

65、总述Spark的架构

从集群部署的角度来看,Spark 集群由集群管理器 Cluster Manager、工作节点 Worker、执行器 Executor、驱动器 Driver、应用程序 Application 等部分组成。

Cluster Manager:主要负责对集群资源的分配和管理,Cluster Manager 在 YARN 部署模式下为 RM,在 Mesos 下为 Mesos Master,Standalone 模式下为 Master。CM 分配的资源属于一级分配,它将各个 Worker 上的内存、CPU 等资源分配给 Application,但是不负责对 Executor 的资源分类。Standalone 模式下的 Master 会直接给 Application 分配内存、CPU 及 Executor 等资源。

Worker:Spark 的工作节点。在 YARN 部署模式下实际由 NodeManager 替代。Worker 节点主要负责,把自己的内存、CPU 等资源通过注册机制告知 CM,创建 Executor,把资源和任务进一步分配给 Executor,同步资源信息,Executor 状态信息给 CM 等等。Standalone 部署模式下,Master 将 Worker 上的内存、CPU 以及 Executor 等资源分配给 Application 后,将命令 Worker 启动 CoarseGrainedExecutorBackend 进程(此进程会创建 Executor 实例)。

Executor:执行计算任务的一线组件,主要负责任务的执行及与 Worker Driver 信息同步。

**Driver:**Application 的驱动程序,Application 通过 Driver 与 CM、Executor 进行通信。Driver 可以运行在 Application 中,也可以由 Application 提交给 CM 并由 CM 安排 Worker 运行。

Application:用户使用 Spark 提供的 API 编写的应用程序,Application 通过 Spark API 将进行 RDD 的转换和 DAG 的创建,并通过 Driver 将 Application 注册到 CM,CM 将会根据 Application 的资源需求,通过一级资源分配将 Excutor、内存、CPU 等资源分配给 Application。Drvier 通过二级资源分配将 Executor 等资源分配给每一个任务,Application 最后通过 Driver 告诉 Executor 运行任务。

66、一句话说说 Spark Streaming 是如何收集和处理数据的
在 Spark Streaming 中,数据采集是逐条进行的,而数据处理是按批 mini batch进行的,因此 Spark Streaming 会先设置好批处理间隔 batch duration,当超过批处理间隔就会把采集到的数据汇总起来成为一批数据交给系统去处理。

68、介绍一下Spark Streaming的foreachRDD(func)方法

将函数应用于 DStream 的 RDD 上,这个操作会输出数据到外部系统,比如保存 RDD 到文件或者网络数据库等。需要注意的是 func 函数是运行该 Streaming 应用的 Driver 进程里执行的。

69、简单描述一下Spark Streaming的容错原理

Spark Streaming 的一个特点就是高容错。

首先 Spark RDD 就有容错机制,每一个 RDD 都是不可变的分布式可重算的数据集,其记录这确定性的操作血统,所以只要输入数据是可容错的,那么任意一个 RDD 的分区出错或不可用,都是可以利用原始输入数据通过转换操作而重新计算出来的。

预写日志通常被用于数据库和文件系统中,保证数据操作的持久性。预写日志通常是先将操作写入到一个持久可靠的日志文件中,然后才对数据施加该操作,当加入施加操作中出现了异常,可以通过读取日志文件并重新施加该操作。

另外接收数据的正确性只在数据被预写到日志以后接收器才会确认,已经缓存但还没保存的数据可以在 Driver 重新启动之后由数据源再发送一次,这两个机制确保了零数据丢失,所有数据或者从日志中恢复,或者由数据源重发。

70、DStream 有几种转换操作

Transform Operation、Window Operations、Join Operations

71、聊聊Spark Streaming的运行架构

72、说说DStreamGraph

Spark Streaming 中作业生成与 Spark 核心类似,对 DStream 进行的各种操作让它们之间的操作会被记录到名为 DStream 使用输出操作时,这些依赖关系以及它们之间的操作会被记录到明伟 DStreamGraph 的对象中表示一个作业。这些作业注册到 DStreamGraph 并不会立即运行,而是等到 Spark Streaming 启动之后,达到批处理时间,才根据 DG 生成作业处理该批处理时间内接收的数据。

73、创建RDD的方式以及如何继承创建RDD

Spark 可以从 Hadoop 支持的任何存储源创建分布式数据集,包括本地文件系统、HDFS、Cassandra、HBase、Amazon S3等。Spark 支持文本文件、SequenceFile 和任何其他 Hadoop InputFormat。可以使用SparkContext的textFile方法创建文本文件RDDs。

val distFile = sc.textFile("data.txt")

74、分析一下Spark Streaming的transform()和updateStateByKey()两个操作

transform(func) 操作:允许 DStream 任意的 RDD-to-RDD 函数。

updateStateByKey 操作:可以保持任意状态,同时进行信息更新,先定义状态,后定义状态更新函数。

75、说说Spark Streaming的输出操作

print()saveAsTextFiles(prefix, [suffix])saveAsObjectFiles(prefix, [suffix])saveAsHadoopFiles(prefix, [suffix])foreachRDD(func)

76、谈谈Spark Streaming Driver端重启会发生什么

恢复计算:使用检查点信息重启 Driver 端,重构上下文并重启接收器

恢复元数据块:为了保证能够继续下去所必备的全部元数据块都被恢复

未完成作业的重新形成:由于失败而没有处理完成的批处理,将使用恢复的元数据再次产生 RDD 和对应的作业

读取保存在日志中的块数据:在这些作业执行的时候,块数据直接从预写日志中读出,这将恢复在日志中可靠地保存所有必要的数据

重发尚未确认的数据:失败时没有保存到日志中的缓存数据将由数据源再次发送

77、再谈Spark Streaming的容错性

实时流处理系统需要长时间接收并处理数据,这个过程中出现异常是难以避免的,需要流程系统具备高容错性。Spark Streaming 一开始就考虑了两个方面。

利用 Spark 自身的容错设计、存储级别和 RDD 抽象设计能够处理集群中任何 Worker 节点的故障

Spark 运行多种运行模式,其 Driver 端可能运行在 Master 节点或者集群中的任意节点,这样让 Driver 端具备容错能力是很大的挑战,但是由于其接收的数据是按照批进行存储和处理,这些批次数据的元数据可以通过执行检查点的方式定期写入到可靠的存储中,在 Driver 端重新启动中恢复这些状态

当接收到的数据缓存在 Executor 内存中的丢失风险要怎么处理呢?

如果是独立运行模式/Yarn/Mesos 模式,当 Driver 端失败的时候,该 Driver 端所管理的 Executor 以及内存中数据将终止,即时 Driver 端重新启动这些缓存的数据也不能被恢复。为了避免这种数据损失,就需要预写日志功能了。

当 Spark Streaming 应用开始的时候,也就是 Driver 开始的时候,接收器成为长驻运行任务,这些接收器接收并保存流数据到 Spark 内存以供处理。

接收器将数据分成一系列小块,存储到 Executor 内存或磁盘中,如果启动预写日志,数据同时还写入到容错文件系统的预写日志文件。

通知 StreamingContext,接收块中的元数据被发送到 Driver 的 StreamingContext,这个元数据包括两种,一是定位其 Executor 内存或磁盘中数据位置的块编号,二是块数据在日志中的偏移信息(如果启用 WAL 的话)。

78、流数据如何存储

作为流数据接收器调用 Receiver.store 方式进行数据存储,该方法有多个重载方法,如果数据量很小,则攒多条数据成数据块再进行块存储,如果数据量大,则直接进行块存储。

79、StreamingContext启动时序图吗

初始化 StreamingContext 中的 DStreamGraph 和 JobScheduler,进而启动 JobScheduler 的 ReceiveTracker 和 JobGenerator。

初始化阶段会进行成员变量的初始化,重要的包括 DStreamGraph(包含 DStream 之间相互依赖的有向无环图),JobScheduler(定时查看 DStreamGraph,然后根据流入的数据生成运行作业),StreamingTab(在 Spark Streaming 运行的时候对流数据处理的监控)。

然后就是创建 InputDStream,接着就是对 InputDStream 进行 flatMap, map, reduceByKey, print 等操作,类似于 RDD 的转换操作。

启动 JobScheduler,实例化并启动 ReceiveTracker 和 JobGenerator。

启动 JobGenerator

启动 ReceiverTracker

80、说说RDD和DataFrame和DataSet的关系

共性:

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出

猜你喜欢

转载自blog.csdn.net/wyn_365/article/details/121314495