pose_estimation_3d2d.cpp

#include <iostream>

#include <opencv2/core/core.hpp>

#include <opencv2/features2d/features2d.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/calib3d/calib3d.hpp>

#include <Eigen/Core>

#include <Eigen/Geometry>

#include <g2o/core/base_vertex.h>

#include <g2o/core/base_unary_edge.h>

#include <g2o/core/block_solver.h>

#include <g2o/core/optimization_algorithm_levenberg.h>

#include <g2o/solvers/csparse/linear_solver_csparse.h>

#include <g2o/types/sba/types_six_dof_expmap.h>

#include <chrono>

 

using namespace std;

using namespace cv;

 

void find_feature_matches (

    const Mat& img_1, const Mat& img_2,

    std::vector<KeyPoint>& keypoints_1,

    std::vector<KeyPoint>& keypoints_2,

    std::vector< DMatch >& matches );

 

// 像素坐标转相机归一化坐标

Point2d pixel2cam ( const Point2d& p, const Mat& K );

 

void bundleAdjustment (

    const vector<Point3f> points_3d,

    const vector<Point2f> points_2d,

    const Mat& K,

    Mat& R, Mat& t

);

 

int main ( int argc, char** argv )

{

    if ( argc != 5 )

    {

        cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"<<endl;

        return 1;

    }

    //-- 读取图像

    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );

    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

 

    vector<KeyPoint> keypoints_1, keypoints_2;

    vector<DMatch> matches;

    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );

    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

 

    // 建立3D点

    Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    vector<Point3f> pts_3d;

    vector<Point2f> pts_2d;

    for ( DMatch m:matches )

    {

        ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ];//遍历每一个像素

        if ( d == 0 )   // bad depth

            continue;

        float dd = d/5000.0;

        Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );

        pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) );//转化成非齐次坐标(相机坐标系)

        pts_2d.push_back ( keypoints_2[m.trainIdx].pt );

    }

 

    cout<<"3d-2d pairs: "<<pts_3d.size() <<endl;

 

    Mat r, t;

    solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法,PnP是知道3D空间点(第一帧算出)及其投影位置(第二帧)时,估计位姿

    Mat R;

    cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵

 

    cout<<"R="<<endl<<R<<endl;

    cout<<"t="<<endl<<t<<endl;

 

    cout<<"calling bundle adjustment"<<endl;

 

    bundleAdjustment ( pts_3d, pts_2d, K, R, t );//pts_3d根据R,T,K得到的像素坐标与pts_2d作差就是为误差,对位姿求导,得到误差最小的位姿

}

 

void find_feature_matches ( const Mat& img_1, const Mat& img_2,

                            std::vector<KeyPoint>& keypoints_1,

                            std::vector<KeyPoint>& keypoints_2,

                            std::vector< DMatch >& matches )

{

    //-- 初始化

    Mat descriptors_1, descriptors_2;

    // used in OpenCV3

    Ptr<FeatureDetector> detector = ORB::create();

    Ptr<DescriptorExtractor> descriptor = ORB::create();

    // use this if you are in OpenCV2

    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );

    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );

    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );

    //-- 第一步:检测 Oriented FAST 角点位置

    detector->detect ( img_1,keypoints_1 );

    detector->detect ( img_2,keypoints_2 );

 

    //-- 第二步:根据角点位置计算 BRIEF 描述子

    descriptor->compute ( img_1, keypoints_1, descriptors_1 );

    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

 

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离

    vector<DMatch> match;

    // BFMatcher matcher ( NORM_HAMMING );

    matcher->match ( descriptors_1, descriptors_2, match );

 

    //-- 第四步:匹配点对筛选

    double min_dist=10000, max_dist=0;

 

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

        double dist = match[i].distance;

        if ( dist < min_dist ) min_dist = dist;

        if ( dist > max_dist ) max_dist = dist;

    }

 

    printf ( "-- Max dist : %f \n", max_dist );

    printf ( "-- Min dist : %f \n", min_dist );

 

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )

        {

            matches.push_back ( match[i] );

        }

    }

}

 

Point2d pixel2cam ( const Point2d& p, const Mat& K )

{

    return Point2d

           (

               ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),

               ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )

           );

}

 

void bundleAdjustment (

    const vector< Point3f > points_3d,

    const vector< Point2f > points_2d,

    const Mat& K,

    Mat& R, Mat& t )

{

    // 初始化g2o

    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose 维度为 6(R和T各三维, landmark 维度为 3

    Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器

    Block* solver_ptr = new Block ( linearSolver );     // 矩阵块求解器

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );

    g2o::SparseOptimizer optimizer;

    optimizer.setAlgorithm ( solver );

 

    // vertex

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose

    Eigen::Matrix3d R_mat;

    R_mat <<

          R.at<double> ( 0,0 ), R.at<double> ( 0,1 ), R.at<double> ( 0,2 ),

               R.at<double> ( 1,0 ), R.at<double> ( 1,1 ), R.at<double> ( 1,2 ),

               R.at<double> ( 2,0 ), R.at<double> ( 2,1 ), R.at<double> ( 2,2 );

    pose->setId ( 0 );

    pose->setEstimate ( g2o::SE3Quat (

                            R_mat,

                            Eigen::Vector3d ( t.at<double> ( 0,0 ), t.at<double> ( 1,0 ), t.at<double> ( 2,0 ) )

                        ) );

    optimizer.addVertex ( pose );

 

    int index = 1;

    for ( const Point3f p:points_3d )   // landmarks

    {

        g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();

        point->setId ( index++ );

        point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );

        point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容

        optimizer.addVertex ( point );

    }

 

    // parameter: camera intrinsics

    g2o::CameraParameters* camera = new g2o::CameraParameters (

        K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0//??????????????

    );

    camera->setId ( 0 );

    optimizer.addParameter ( camera );

 

    // edges

    index = 1;

    for ( const Point2f p:points_2d )

    {

        g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();

        edge->setId ( index );

        edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );

        edge->setVertex ( 1, pose );//pose本来就是VertexSE3Expmap类型不用转换

        edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );

        edge->setParameterId ( 0,0 );

        edge->setInformation ( Eigen::Matrix2d::Identity() );

        optimizer.addEdge ( edge );

        index++;

    }

 

    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();

    optimizer.setVerbose ( true );

    optimizer.initializeOptimization();

    optimizer.optimize ( 100 );

    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();

    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );

    cout<<"optimization costs time: "<<time_used.count() <<" seconds."<<endl;

 

    cout<<endl<<"after optimization:"<<endl;

    cout<<"T="<<endl<<Eigen::Isometry3d ( pose->estimate() ).matrix() <<endl;

}

猜你喜欢

转载自blog.csdn.net/qq_40213457/article/details/80976807