『素数(Prime)判定和线性欧拉筛法(The sieve of Euler)』

  <更新提示>
  
  <第一次更新>
  
  <正文>
  
  素数(Prime)及判定
  
  定义
  
  素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数。
  
  1既不是素数也不是合数。
  
  判定
  
  如何判定一个数是否是素数呢?显然,我们可以枚举这个数的因数,如果存在除了它本身和1以外的因数,那么这个数就是素数。
  
  在枚举时,有一个很简单的优化:一个合数nn必有一个小于等于n−−√n的因数。
  
  证明如下:
  
  假设一个合数nn没有小于等于n−−√n的因数。
  
  由于nn为合数,所以除了nn与11以外,它至少还有两个因数p1(p1>n−−√)p1(p1>n)和p2(p2>n−−√)p2(p2>n),满足p1p2=np1p2=n。
  
  与p1>n−−√,p2>n−−√p1>n,p2>n矛盾,故假设不成立。
  
  所以我们得到了O(n−−√)O(n)效率的素数判定算法。
  
  Code:Code:
  
  inline bool check(k)
  
  {
  
  for(int i=2;i*i<=k;i++)
  
  if(k%i==0)return 0;
  
  return 1;
  
  }
  
  筛法(Sieve)求素数
  
  现在有一个新的问题模型,如果我们需要求解1−n1−n的所有素数,那么直接用判定法效率显然太低了。我们需要更高效率的算法,由此我们引入筛法。
  
  埃氏筛法(The sieve of Eratosthenes)
  
  这是筛法思想的基本模型。根据算数基本定理,我们得知:
  
  k=pa11⋅pa22⋅...⋅pakk
  
  k=p1a1·p2a2·...·pkak
  
  即任意一个数kk都是由若干素数相乘得到的。
  
  那么我们可以枚举2−n2−n的每一个数,如果这个数没被标记,则说明这个数是素数,记录这个数,并标记这个数的所有倍数不是素数。
  
  那么这样就可以求解1−n1−n的所有素数了。时间复杂度为O(n ln(ln n))O(n ln(ln n))。
  
  实现
  
  这就是OI竞赛中最常用的素数求解算法了,实现也非常简单。
  
  Code:Code:
  
  #include<bits/stdc++.h>
  
  using namespace std;
  
  int cnt=0,n,flag[100080]={},Prime[100080]={};
  
  inline void sieve(void)
  
  {
  
  for(int i=2;i<=n;i++)
  
  {
  
  if(!flag[i])Prime[++cnt]=i;else continue;
  
  for(int j=i*2;j<=n;j+=i)flag[j]=true;
  
  }
  
  }
  
  int main(void)
  
  {
  
  cin>>n;
  
  sieve();
  
  for(int i=1;i<=cnt;i++)cout<<Prime[i]<<" ";
  
  cout<<endl;
  
  }
  
  欧拉筛法(The sieve of Euler)
  
  欧拉筛法就是基于埃氏筛法的优化。
  
  在模拟埃氏筛法的过程中,我们不难发现有很多合数会被它的各个素因子筛好几次,我们可以基于这种情况进行优化:每个合数必有一个最小素因子,用这个因子筛掉合数
  
  所以,我们直接利用之前求出的素数进行筛数,如果发现当前这个数已经是之前某个素数的倍数时,那就说明这个数在以后会由某个更大的数乘以这个小素数筛去,同理,之后的筛数也是没有必要的,这时候就可以跳出循环了。
  
  这样,我们就能保证每一个数只被筛一次,就实现了线性时间复杂度的筛法。
  
  实现
  
  欧拉筛法和埃氏筛法大体相似,但细节有所不同,注意不要搞混。
  
  Code:Code:
  
  #include<bits/stdc++.h>
  
  using namespace std;
  
  int cnt=0,n,flag[100080]={},Prime[100080]={};
  
  inline void seive(void)
  
  {
  
  for(int i=2;i<=n;i++)
  
  {
  
  if(!flag[i])Prime[++cnt]=i;
  
  //注意,这里没了continue,因为在筛某个数时需要用到它的最大因数,而这个数可能是个合数,所以不管是素数还是合数,都要执行以下的筛数过程
  
  for(int j=1;j<www.michenggw.com =www.mcyllpt.com cnt&&i*Prime[j]<=n;j++)
  
  {
  
  flag[i*Prime[j]]=1;
  
  if(i%Prime[j]==0)break;
  
  }
  
  }
  
  }
  
  int main(void)
  
  {
  
  cin>>n;
  
  seive(www.gcyL157.com);
  
  for(int i=1;i<=cnt;www.mhylpt.com/  i++)cout<<Prime[i]<<" ";
  
  cout<<endl;
  
  }

猜你喜欢

转载自blog.csdn.net/li123128/article/details/84999475