C语言深度解剖读书笔记

  开始本节学习笔记之前,先说几句题外话。其实对于C语言深度解剖这本书来说,看完了有一段时间了,一直没有时间来写这篇博客。正巧还刚刚看完了国嵌唐老师的C语言视频,觉得两者是异曲同工,所以就把两者一起记录下来。等更新完这七章的学习笔记,再打算粗略的看看剩下的一些C语言的书籍。


本节知识:

1. c语言中一共有32个关键字,分别是:auto、int、double、long、char、short、float、unsigned、signed、sizeof、extern、static、goto、if、else、struct、typedef、union、enum、switch、case、break、default、do、while、const、register、volatile、return、void、for、continue。 注意:define、include这些带#号的都不是关键字,是预处理指令。
2. 定义与声明
定义   是创建一个对象并为止分配内存。  如:int   a;
声明   是告诉编译器在程序中有这么一个对象,并没有分配内存。   如: extern   int    a;
3.对于 register这个关键字定义的变量,不能进行取地址运算(&),因为对于x86架构来说,地址都是在内存中的,不是在寄存器中的,所以对寄存器进行取地址是没有意义的。并且应该注意的是给register定义的变量,应该赋一个比寄存器大小 要小的值。 注意:register只是请求寄存器变量,但是不一定申请成功。
4. 关键字static:=
   对于static有两种用法:
   a.修饰变量:对于静态全局变量和静态局部变量,都有一个特点就是不能被作用域外面,或外文件调用(即使是使用了extern也没用)。 原因就是它是存储在静态存储区中的。对于函数中的静态局部变量还有一个问题,就是它是存在静态存储区的,即使函数结束栈区收回,这个变量的值也不改变。static int i=0;  这是一条初始化语句  而不是一条赋值语句  所以跟i=0不一样的。
   b.修饰函数 :是定义为静态函数,使函数只能在文件内部使用,这样不同文件中的函数名就不怕重名了。原因也是相同的,就是static修饰的一切都是在静态存储区中的。
-
static代码如下:
[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3.   
  4. int main(void)   
  5. {  
  6.     static int j=0;  
  7.     int k;  
  8.     void fun1()  
  9.     {  
  10.         j=0;  
  11.         j++;  
  12.         printf("fun1 %d\n",j);  
  13.     }  
  14.     void fun2()  
  15.     {  
  16.   
  17.         static int i=0;  
  18.         //i=0;  
  19.         printf("fun2 %d\n",i);  
  20.         i++;  
  21.     }  
  22.     for(k=0;k<10;k++)  
  23.     {  
  24.             fun1();  
  25.             fun2();  
  26.     }   
  27.     return 1;    
  28. }  


5. 关键字sizeof:
怎么说明sizeof是关键字 不是函数,这里有两个例子:
a. int i;    printf("%d\n",sizeof i); 可见 sizeof是关键字
b. sizeof(fun());  不调用fun函数 因为 sizeof是在预编译期间完成的  说明是关键字
sizeof的代码:
[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3.   
  4. void fun(int b[100])  
  5. {  
  6.     printf("sizeof(b) is %d\n",sizeof(b));  
  7. }  
  8.   
  9. int main(void)   
  10. {  
  11.     int *p=NULL;  
  12.     int a[100];  
  13.     int b[100];  
  14.     printf("sizeof(p) is %d\n",sizeof(p));  
  15.     printf("sizeof(*p) is %d\n",sizeof(*p));  
  16.     printf("sizeof(a[100]) is %d\n",sizeof(a[100]));  
  17.     printf("sizeof(a) is %d\n",sizeof(a));  
  18.     printf("sizeof(&a) is %d\n",sizeof(&a));  
  19.     printf("sizeof(&a[0] is %d\n",sizeof(&a[0]));  
  20.       
  21.     fun(b);  
  22.     return 1;  
  23. }  
6. 关键字if:
a.对于bool类型的比较:FLASE都是0  TRUE不一定是1   所以应该用if(bool_num);    if(!bool_num);
对于浮点型与0比较要是否注意:不能直接比较,要定义精度,其实浮点型与浮点型比较也要注意这个问题,就是不能直接比较,要设定精度,如图:
原因跟浮点型的存储格式有关,因为float的有效位是6位,超出6位就未知了,所以不能直接进行比较。同样的原因,也不能用一个很大的浮点数去加一个很小的浮点数。这个加法可能体现不出来。
b.对于if后面的分号问题 ,一定要注意, 会被解析成if后面有一个空语句, 所以使用空语句的时候最好使用NULL;
c.在使用if else的时候,应该if里面先处理正常情况(出现概率大的情况),else里面处理异常情况,这是一个好习惯看着代码舒服。
7. 关键字switch、case:
注意case后面应该是整型或者字符型的常量及常量表达式,case后面最好是应该安装字母或数字顺序排列,先处理正常情况,后处理异常情况。
8. 关键字void:
void *的一般用途是, 接收任何类型的指针 ,如当传入函数的指针类型不确定的时候,一般用 void*接收任何类型的指针。
void* 指针作为右值赋值给其他指针的时候一定要强制类型转换,因为void* 指针类型不定。
GNU中void *p p++跟char *p p++是一样的 。
注意:strcpy跟memcpy的区别 就是 strcpy是char *   memcpy是void *  。 所以说strcpy是给字符串赋值,memset是给整块内存赋值。
9. 关键字extern:
 extern就有两种用法:一种是声明外部定义的变量或函数、另一种是extern c告诉编译器以标准c语言方式编译
10. 关键字return:
使用return的时候,要注意不能返回栈内指针,因为在函数体结束后,栈是会被收回的,其实是不能期望返回一个指针,来返回一块内存。因为返回一个指针或者地址没有问题,因为return是copy然后返回的,但是那个指针指向的内存如果是在函数栈中的话,就很有可能在函数结束后被收回了!!!
return  ; 一般返回的值是1,根据编译器而定。
11. 关键字const:
a.const是用来定义只读变量的,切忌它定义的是变量,不是常量,真的常量是#define的和enum。
b.在陈正冲老师的这本书中的第35页, 有说编译器不为普通const只读变量分配内存空间,而是将它们保存在符号表中,这使得它成为一个编译期间的值,没有了存储与读内存的操作,使得它的效率也很高,节省空间。具体的没怎么看懂,本次学习也不打算看懂了(因为它说const修饰的全局只读变量是在静态区的,我太认同)~~~嘿嘿
c.其实const就是修饰变量,然后这个变量就不能当作左值了,当作左值,编译器就报错!!!
d. 其实const中最不好区分的知识点是,如图:
其实对于这四个情况的记忆很简单,就是看const跟谁近,是const *p   ,还是  * const  p,还是const  *  const  p,这样就很容易看出来const是修饰谁的了吧。
e.但是const修饰的变量可以通过,指针将其改变。
f.const修饰函数参数表示在函数体内不希望改变参数的值,比如说在strcmp等函数中,用的都是const  char*
g.const修饰函数返回值表示返回值不可以改变,多用于返回指针的情况:
[cpp]  view plain copy
  1. cosnt int* func()  
  2. {  
  3.       static int  count  =  0;  
  4.       count++;  
  5.       return &count;  
  6. }  

h.在看const修饰谁,谁不变的问题上,可以把类型去掉再看,代码如下:

[cpp]  view plain copy
  1. struct student  
  2. {  
  3.           
  4. }*str;  
  5. const str stu3;  
  6. str const stu4;  

str是一个类型 ,所以在去掉类型的时候,应该都变成const stu3和const stu4了,所以说应该是stu4和stu3这个指针不能被赋值。
12.关键字volatile:
volatile搞嵌入式的,一定都特别属性这个关键字,记得第一使用这个关键字的时候是在韦东山老师的,Arm裸机视频的时候。volatile是告诉编译不要对这个变量进行任何优化,直接在内存中进行取值。一般用在对寄存器进行赋值的时候,或修饰可能被多个线程访问的变量。

注意:const  volatile  int  i;  应该是定义了一个只读寄存器。
13. 关键字struct:
a.对于空结构体的大小问题 ,vc和gcc的输出是不一样的,vc是1 、gcc是0 ,而且vc对于结构体的定义也和gcc不一样 ,vc中有c++的标准扩展了struct的作用,而gcc中是纯c的标准,就是按照标准c语言来的。
b.struct这里还有一个很有用的东西,就是柔性数组,这个东西很有意思,我已经在数据结构的静态链表中进行了阐述,这里就仅仅记录一下,不详细说明了。
14. 关键字union: 
union有一个作用就是判断,pc是大端存储还是小端存储的,x86是小端存储的,这个东西是有cpu决定的。arm(由存储器控制器决定)和x86一样都是小端的。
下面的是一个大端小端的一个例子,代码如下:
[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. int main(void)   
  4. {  
  5.     int a[5]={1,2,3,4,5};  
  6.     int *p=(int *)(&a+1);  //数组指针 加一  进行正常的指针运算 走到数  
  7.   
  8. 组尾   
  9.     int *d=(int *)((int)a+1);//地址加一  不是指针运算  
  10.     //printf("%x\n",*((char *)((int)a+1)-1));  
  11.        
  12.     /*因为是小端存储  高地址  0x00  0x00  0x00  0x02  0x00  0x00  0x00  0x01 低地址*/  
  13.     /*变成了 0x02  0x00  0x00  0x00 */   
  14.     printf("%x,%x",p[-1],*d);  /*  第二个值就是这么存储的0x02  0x00  0x00  0x00  低地址处  所以就是2000000*/  
  15.     int a=0x11223344;  
  16.     char *p=(char *)((int)&a);  
  17.     printf("%x\n%x\n",*(p+0),p+0);   
  18.     printf("%x\n%x\n",*(p+1),p+1);  
  19.     return 0;  
  20. }  
下面是一个利用union判断PC是大端小端的例子,代码如下:
[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. union  
  4. {  
  5.     int i;  
  6.     char a[2];  
  7. }*p,u;  
  8.   
  9. int main(void)   
  10. {  
  11.     p=&u;  
  12.     p->i=0x3839;  
  13.     printf("%x\n",p->i);  
  14.     printf("a0p=%x,a1p=%x\n",&(p->a[0]),&(p->a[1]));  
  15.     printf("a0=%x,a1=%x\n",p->a[0],p->a[1]);    
  16.     return 0;  
  17. }  
15. enum关键字:
枚举enum其实就是 int类型,用来保存枚举常量的。enum枚举类型,这个才是真正的常量,定义常量一般用enum 。#define是宏定义是在预编译期间单纯的替换。#define宏定义无法调试,枚举常量是可以调试的。#define宏定义是无类型信息的,枚举类型是有类型信息的常量,是int型的。
16. typedef关键字:
a.typedef用于给一个已经存在的数据类型重新命名。
b.typedef并没有产生新的数据类型
c. typedef重定义的类型不能进行unsigned和signed进行扩展
原因在于typedef 定义新类型的时候 应该定义全了,unsigned int是一个类型  不能拆开的。
[cpp]  view plain copy
  1. typedef  unsigned  int   int32;  
d.typedef 和 #define的区别:typedef是给已有的类型取别名,而#define只是简单的字符替换。区别如下图:
#define PCHAR char*             PCHAR p3,p4;  //p3是char*型 p4是char型
typedef char* PCHAR;             PCHAR p1,p2;    //p1和p2都是 char*型
e.有一个知识点忘记了,嘿嘿,程序如下:
[cpp]  view plain copy
  1. typedef struct student  
  2. {  
  3. }str,*str1;  

str1 abc;  就是定义一个struct student *类型
str abc;   就是定义一个struct student 类型
f.对于const和typedef还有两个问题遗漏了,在 < c++学习笔记(1.c到c++的升级)>这篇文章中的最后 (8.补充) 中进行了阐述。

17. 关键字for
a.长循环应该在最内层,这样可以减少各个层直接的切换
b.看看如下两段代码有什么区别:
[cpp]  view plain copy
  1. 程序一:  
  2. for(i=0; i<m; i++)  
  3. {  
  4.     for(j=0; j<n; j++)  
  5.     {  
  6.         for(k=0; k<p; k++)  
  7.         {  
  8.             c[i][j] = a[i][k] * b[k][j];  
  9.         }  
  10.     }  
  11. }  
  12.   
  13. 程序二:  
  14. for(i=0; i<m; i++)  
  15. {  
  16.     for(k=0; k<p; k++)  
  17.     {  
  18.         for(j=0; j<n; j++)  
  19.         {  
  20.             c[i][j] = a[i][k] * b[k][j];  
  21.         }  
  22.     }  
  23. }  
从程序来看,两者实现了同样的功能,区别只是第二层和第三层循环交换了位置。但是他们的差距却是巨大的 ,这个需要从CPU的cache来说了, cpu每次访问内存的时候都会先从内存将数据读入cache ,然后以后都从cache取数据。但是cache的大小是有限的 ,因此只会有部分进入cache。我们来看这个程序 c[i][j] = a[i][k] * b[k][j];  我们都知道C中二维数组是在内存中一维排列的,如果我们把k循环放在第三层 ,那么cache基本没有用了, 每次都需要重新到内存取数据,交换后每次取到cache的数据都可以复用多次 。所以说第二种写法效率高。
18. 关键字char(本节最重要的知识点char越界的问题):
对于char有两种类型,分别是:unsigned  char(范围是0~255)和  signed  char(范围是-128~127)  一个是有符号的,一个是没有符号的。
在计算机中数据都是以数据的补码形式进行存储的,所以如图:
对于无符号类型(unsigned  int):就是不考虑最高位的问题,都是原码与补码相等的情况。
     然后我们说说越界的问题,对于一个unsigned  char  i;  我们给 i = 256;这很明显越界了,i是0到255的,那256的补码是什么再在它补码中取低八位就是i的值了。256的补码是1  0000  0000,所以printf ("%d\n",i);的值会是0。如果i = -1;-1的补码是1111 1111 所以会打印出255。
     对于一个char类型的越界又是什么样的呢?
     char  i; 我们给 i  =  129; 129是一个正数,它的补码就是原码:是1000 0001,但是它是char型,在char型中1000  0001是什么,如图是-127。所以printf("%d\n",i);  得到的是-127。如果i  =  -129,它的补码是0111  1111,所以它打印出来的是127。如果是i  =  259,我们就把它的补码取低八位来看。259的补码是1  0000  0011  所以说打印出来的是3。最后一个例子,如果i  =  385,它的补码是1   1000    0001  ,取低八位是1000   0001,所以打印的应该是-127。
     其实不管是有符号的还是没符号的,原则就一个,把数据转换成为补码,取低八位,然后在上面的图中去比较,就ok了。
给一个练习,代码如下:
[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4. int main()  
  5. {  
  6.     char a[1000];  
  7.     int i;  
  8.     for(i=0; i<1000; i++)  
  9.     {  
  10.         a[i] = (-1-i);  
  11.     }     
  12.          while(a[i])  
  13.     {  
  14.         printf("%d\n",a[i]);  
  15.         i++;  
  16.     }  
  17.     printf("%d\n",strlen(a));  
  18.     return 0;  
  19. }  

打印结构是什么:答案是255   分析步骤跟上面是一样的,自己算算吧!!!
其实int的越界原理跟char是一样的。
19.一个关于tab键的问题:
不同编辑器的tab键的字符数是不一样的,一般是4个字符,也有两个字节的,要注意一下,为了代码格式的整齐,建议设置一下tab或者使用空格。

本节遗留问题:

1.printf的实现问题,其实就是可变参数的问题,看linux源码,还有一个问题就是转移字符的问题,char p = '\'' 这样一个问题。
2.浮点型的存储格式,为什么有效位是6位,小数是怎么保存的。

二、

本节接触了,C语言中的三大蛋疼:符号优先级  ++i顺序点  贪心法  (其实这里面好多都是跟编译器有关的,而且有好多问题都是可以通过良好的编程习惯避免的)

本节知识点:

1.注释问题:

    注释不能把关键字弄断,如:in/*注释*/t

    注释不是简单的剔除,而是使用空格替换

    编译器认为双引号括起来的内容都是字符串,双斜杠也不例外。如:char *p = "heh//jfeafe"   //不起注释作用

2.接续符:

    接续符\  ,常用于宏定义中 

[cpp]  view plain copy
  1. #define SWAP(a,b) \  
  2. {                 \  
  3.     int temp = a; \  
  4.     a = b;        \  
  5.     b = temp;     \  
  6. }  

    反斜杠同时有接续符和转义符两个用途,当接续符使用的时候,可以直接在程序中出现。当转义符使用的时候,必须是出现在字符串中。

    接续符,也用与接续一个关键字,代码如下,  注意: 但是直接连接\两边不能有空格。

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3.   
  4. int main()  
  5. {  
  6.     cha\  
  7. r a = 12;  
  8.     return 0;  
  9. }  

3.逻辑运算符:有一个短路规则
4.最容易忘记规则的两个运算符:

    三目运算符:(a?b:c)   当a的值为真的时候   返回b的值,否则返回c的值

    逗号表达式:a,b    表达式的值为b的值

5.位运算:

    对于左移和右移<<  >>问题 :无符号的,和有符号左移,都是补0 ,对于有符号的在右移动的时候,正数补零,负数补什么跟编译器有关系。并且左移和右移的大小不能大于数据的长度,也不能小于0。

    交换两个数,有一种不借助中间变量的方法,就是异或,代码如下:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2.   
  3. #define SWAP1(a,b) \  
  4. {                  \  
  5.     int temp = a;  \  
  6.     a = b;         \  
  7.     b = temp;      \  
  8. }  
  9.   
  10. #define SWAP2(a,b) \  
  11. {                  \  
  12.     a = a + b;     \  
  13.     b = a - b;     \  
  14.     a = a - b;     \  
  15. }  
  16.   
  17. #define SWAP3(a,b) \  
  18. {                  \  
  19.     a = a ^ b;     \  
  20.     b = a ^ b;     \  
  21.     a = a ^ b;     \  
  22. }  
  23.   
  24. int main()  
  25. {  
  26.     int a = 1;  
  27.     int b = 2;  
  28.       
  29.     SWAP1(a,b);  
  30.     SWAP2(a,b);  
  31.     SWAP3(a,b);  
  32.       
  33.     return 0;  
  34. }  

6.i++,i--顺序点:

        只有 i++ i--才有顺序点  就是什么时候开始加,什么时候开始减。真心对于顺序点 是搞不懂啊~~~ (++i)+(++i)+(++i) ,在gcc中是5+5+6(DEV C++) ,在vc中是6+6+6(vc++6.0) ,不同编译器顺序点不一样。这个例子的顺序点 在; 前。
        a=((++i),(++i),(++i))  它的顺序点在每个逗号前面完成计算。我觉得特殊的顺序点 是可以通过合理的顺序布局来避免的。

7.贪心法:

        每一个符号应该尽可能多的包含字符
8.符号运算优先级问题:

        个人觉得优先级不用记,好好的写括号吧~~~

         给一个易错优先级表,如图:

9.c语言中的类型转换:

    c语言中有两种转换类型,分别是:隐式转换和显示转换(强制类型转换)

    隐式转换的规则:

    a.算术运算中,低类型转换为高类型

    b.赋值运算中,表达式的类型转换为左边变量的类型

    c.函数调用时,实参转换成形参的类型

    d.函数返回值,return表达式转换为返回值的类型

隐式转换的例子,代码如下:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2.   
  3. int main()  
  4. {  
  5.     int i = -2;  
  6.     unsigned int j = 1;  
  7.       
  8.     if( (i + j) >= 0 )  
  9.     {  
  10.         printf("i+j>=0\n");  
  11.     }  
  12.     else  
  13.     {  
  14.         printf("i+j<0\n");  
  15.     }  
  16.       
  17.     printf("i+j=%d\n", i + j);  
  18.       
  19.     return 0;  
  20. }  

注意:在使用C语言的时候,应该特别注意数据的类型是否相同,尽量避免隐式转换带来的不必要的麻烦~~~



   三、

本节知识点:

1.编译过程的简介:

   预编译:

a.处理所有的注释,以空格代替。

b.将所以#define删除,并展开所有的宏定义,字符串替换。

c.处理条件编译指令#if,#ifdef,#elif,#else,#endif

d.处理#include,并展开被包含的文件,把头文件中的声明,全部拷贝到文件中。

e.保留编译器需要使用的#pragma指令、

怎么样观察这些变化呢?最好的方法就是在GCC中,输入预处理指令,可以看看不同文件经过预处理后变成什么样了,预处理指令:gcc -E file.c -o file.i   注意:-C -E一起使用是预编译的时候保留注释。

   编译:

a.对预处理文件进行一系列词法分析,语法分析和语义分析

                词法分析:主要分析关键字,标示符,立即数等是否合法

                语法分析:主要分析表达式是否遵循语法规则

                语义分析:在语法分析的基础上进一步分析表达式是否合法

b.分析结束后进行代码优化生成相应的汇编代码文件               编译指令:gcc -S  file.c  -o  file.s

   汇编:

汇编器将汇编代码转变为机器可以执行的指令,每个汇编语句几乎都对应一条机器指令,其实机器指令就是机器码,就是2进制码。汇编指令:gcc  -c  file.c  -o file.o  注意:-c是编译汇编不连接。

   链接:

再把产生的.o文件,进行链接就可以生成可执行文件。连接指令:gcc  file.o  file1.o  -o  file  这句指令是链接file.o和file1.o两个编译并汇编的文件,并生成可执行文件file。

链接分两种:静态链接和动态链接,静态链接是在编译器完成的,动态链接是在运行期完成的。静态链接的指令是:gcc -static file.c -o file对于一些没有动态库的嵌入式系统,这是常用的。

一般要想通过一条指令生成可执行文件的指令是:   gcc file.c  -o  file

   资料:这里面说到了很多关于gcc的使用的问题,我提供一个gcc的学习资料,个人觉得还不错,也不长,就是一个txt文档,很全面。资源下载地址http://download.csdn.net/detail/qq418674358/6041183   Ps:嘿嘿,设了一个下载积分,因为真的是没分用了!希望大家见谅哈!

 

2.c语言中的预处理指令:#define、#undef(撤销已定义过的宏名)、#include、#if、#else、#elif、#endif、#ifdef、#ifndef、#line、#error、#pragma。还有一些ANSI标准C定义的宏:__LINE__、__FILE__、__DATA__、__TIME__、__STDC__。这样使用printf("%s\n",__TIME__);     printf(__DATE__);

一个#undef的例子:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4.   
  5.   
  6. #define X 2  
  7. #define Y X*2  
  8. #undef X  
  9. #define X 3  
  10.   
  11.   
  12. int main()  
  13. {  
  14.     printf("%d\n",Y);  
  15.     return 0;  
  16. }  

这个输出的是6,说明了#undef的作用

3.宏定义字符串的时候:应该是 #define HELLO "hello world"  记住是双引号。还有就是一切宏都是不能有分号的,这个一定要切忌!!!

4.宏与函数的比较:

   a.宏表达式在预编译期被处理,编译器不知道有宏表达式存在

   b.宏表达式没有任何的"调用"开销

   c.宏表达式中不能出现递归定义

5.为什么不在头文件中定义全局变量:

如果一个全局变量,想要在两个文件中,同时使用,那这两个文件中都应该#include这个头文件,这样的话就会出现重复定义的问题。其实是重名的问题,因为#include是分别在两个文件中展开的,试想一下,如果在两个文件中的开始部分,都写上int  a = 10;  是不是也会报错。可能你会说那个#ifndef不是防止重复定义吗?是的 ,那是防止在同一个文件中,同时出现两次这个头文件。现在是两个文件中,所以都要展开的。全局变量就重名了!!!所以 对于全局变量,最好是定义在.c文件中,不要定义在头文件中。

6.#pargma pack 设置字符对齐,看后面一节专门写字符对齐问题的!!!

7.#运算符(转换成字符串):

    假如你希望在字符串中包含宏参数,那我们就用#号,它把语言符号转换成字符串。

    #define SQR(x) printf("the "#x"lait %d\n",((x)*(x)));
    SQR(8)
    输出结果是:the 8 lait 64   这个#号必须使用在带参宏中

有个小例子:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4. /*在字符串中  加入宏参用的*/  
  5. #define SCAN(N,String) scanf("%"#N"s",String);  //N是截取的个数  String是存储的字符串   
  6. int main()  
  7. {  
  8.     char dd[256];  
  9.     SCAN(3,dd) //记得没有分号哈  自定义 任意格式输入的scanf  截取输入的前三个   
  10.     printf("%s\n",dd);  
  11.     return 1;  
  12. }  

8.##运算符(粘合剂)

    一般用于粘贴两个东西,一般是用作在给变量或函数命名的时候使用。如#define XNAME(n) x##n

    XNAME(8)为8n   这个##号可以使用在带参宏或无参宏中

下面是一个##运算符的小例子,代码如下:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4.   
  5. #define BL1 bb##ll##1  
  6.   
  7. #define BL(N) bbll##N  
  8. int main()  
  9. {  
  10.     int BL1=10;  
  11.   
  12.     int BL(4)=15;  
  13.     printf("%d\n",bbll1);  
  14.       
  15.     printf("%d\n",bbll4);  
  16.     return 1;  
  17. }  

注意:#号和##号都必须只能在宏定义中使用,不能使用在其他地方
9.其实预编译这块还有一些,不常用到的预编译指令,也是盲点,但是不难理解,用到的时候查查就好。比如说#line、#error、#warning等。




四、



很多人都觉得内存对齐这个问题很难,很不好算,总算错,其实我想说只要你画一画就没那么难了。好了,进入正题。

本节知识点:

1.结构体为什么要内存对齐(也叫字节对齐):

其实我们都知道,结构体只是一些数据的集合,它本身什么都没有。我们所谓的结构体地址,其实就是结构体第一个元素的地址。这样,如果结构体各个元素之间不存在内存对齐问题,他们都挨着排放的。对于32位机,32位编译器(这是目前常见的环境,其他环境也会有内存对齐问题),就很可能操作一个问题,就是当你想要去访问结构体中的一个数据的时候,需要你操作两次数据总线,因为这个数据卡在中间,如图:

在上图中,对于第2个short数据进行访问的时候,在32位机器上就要操作两次数据总线。这样会非常影响数据读写的效率,所以就引入了内存对齐的问题。

另外一层不太重要的原因是:某些硬件平台只能从规定的地址处取某些特定类型的数据,否则会抛出硬件异常。

2.内存对齐的规则:

    a.第一个成员起始于0偏移处

    b.每个成员按其类型大小和指定对齐参数n中较小的一个进行对齐

    c.结构体总长度必须为所有对齐参数的整数倍

    d.对于数组,可以拆开看做n个数组元素

3.来几个小例子,画画图,有助于理解:

第一个例子,代码如下:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. struct _tag_str1  
  3. {  
  4.     char a;  
  5.     int b;  
  6.     short c;  
  7. }str1;  
  8.   
  9. struct _tag_str2  
  10. {  
  11.     char a;  
  12.     short c;  
  13.     int b;  
  14. }str2;  
  15.   
  16. int main()  
  17. {  
  18.     printf("sizeof str1 %d\n",sizeof(str1));  
  19.     printf("sizeof str2 %d\n",sizeof(str2));  
  20.     return 0;  
  21. }   
输出的结果分别是:str1为12    str2为8,分析的过程如下图:

看图很自然就知道了str1为12个字节,str2为8个字节。

第二个例子,上面的那个例子有好多问题还没有考虑到,比如说上面的那个例子在8字节对齐,和4字节对齐的情况都是一样的。结构体中嵌套结构体的内存对齐怎么算,所以就有了这个例子,代码如下:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2.   
  3. #pragma pack(8)  
  4. //#pragma pack(4)  
  5. struct S1  
  6. {  
  7.     short a;  
  8.     long b;  
  9. };  
  10.   
  11. struct S2  
  12. {  
  13.     char c;  
  14.     struct S1 d;  
  15.     double e;  
  16. };  
  17.   
  18. #pragma pack()  
  19.   

猜你喜欢

转载自blog.csdn.net/zhaozhiyuan111/article/details/83145425
今日推荐