【SPOJ 5971】LCMSum

【题目】

洛谷传送门

Description

Given n, calculate the sum LCM(1,n) + LCM(2,n) + … + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

Hint

Constraints 1 <= T <= 300000 1 <= n <= 1000000


【分析】

我们要求的是

i = 1 n l c m ( i , n ) \sum_{i=1}^nlcm(i,n)

l c m lcm 换成 g c d gcd 就是

i = 1 n i × n gcd ( i , n ) \sum_{i=1}^n\frac{i\times n}{\gcd(i,n)}

这个式子可以巧妙的转换成

1 2 ( i = 1 n 1 i × n gcd ( i , n ) + i = 1 n 1 ( n i ) × n gcd ( n i , n ) ) + n \frac{1}{2}(\sum_{i=1}^{n-1}\frac{i\times n}{\gcd(i,n)}+\sum_{i=1}^{n-1}\frac{(n-i)\times n}{\gcd(n-i,n)})+n

根据辗转相减法, gcd ( i , n ) = gcd ( n i , n ) \gcd(i,n)=\gcd(n-i,n) ,因此可以继续化简

1 2 i = 1 n 1 n 2 gcd ( i , n ) + n \frac1 2\sum_{i=1}^{n-1}\frac{n^2}{\gcd(i,n)}+n

也就是说,我们现在的目标就是求出

i = 1 n 1 n 2 gcd ( i , n ) \sum_{i=1}^{n-1}\frac{n^2}{\gcd(i,n)}

我们枚举 gcd \gcd ,把式子转化成

d n n 2 d i = 1 n 1 [ &ThickSpace; gcd ( i , n ) = d &ThickSpace; ] \sum_{d|n}\frac{n^2}{d}\sum_{i=1}^{n-1}[\;\gcd(i,n)=d\;]

转换为 gcd = 1 \gcd=1 的形式

d n n 2 d i = 1 , i n n d [ &ThickSpace; gcd ( i , n d ) = 1 &ThickSpace; ] \sum_{d|n}\frac{n^2}{d}\sum_{i=1,i\ne n}^{\frac{n}{d}}[\;\gcd(i,\frac{n}{d})=1\;]

发现后面部分跟欧拉函数的解析式一样( φ ( n ) = i = 1 n [ &ThickSpace; gcd ( i , n ) = 1 &ThickSpace; ] \varphi(n)=\sum\limits_{i=1}^n[\;\gcd(i,n)=1\;]

用欧拉函数转换一下就是

d n , d n n 2 × φ ( n d ) d \sum_{d|n,d\ne n}\frac{n^2\times \varphi(\frac{n}{d})}{d}

把一个 n n 提出来,也就是

n d n , d n n d × φ ( n d ) = n d n , d 1 d × φ ( d ) n\sum_{d|n,d\ne n}\frac{n}{d}\times\varphi(\frac{n}{d})=n\sum_{d|n,d\ne1}d\times \varphi(d)

然后线性筛出欧拉函数值,预处理一下就可以了。


【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1000005
using namespace std;
bool mark[N];
int prime[N],phi[N];
long long ans[N];
void linear_sieves()
{
	int i,j,sum=0;
	memset(mark,true,sizeof(mark));
	mark[0]=mark[1]=false;phi[1]=1;
	for(i=2;i<N;++i)
	{
		if(mark[i])  prime[++sum]=i,phi[i]=i-1;
		for(j=1;j<=sum&&i*prime[j]<N;++j)
		{
			mark[i*prime[j]]=false;
			if(i%prime[j])  phi[i*prime[j]]=phi[i]*phi[prime[j]];
			else  {phi[i*prime[j]]=phi[i]*prime[j];break;}
		}
	}
}
void prework()
{
	int i,j;
	for(i=1;i<N;++i)
	  for(j=2;i*j<N;++j)
	    ans[i*j]+=1ll*j*phi[j];
	for(i=1;i<N;++i)  ans[i]=ans[i]*i/2+i;
}
int main()
{
	int n,i,x;
	scanf("%d",&n);
	linear_sieves();
	prework();
	for(i=1;i<=n;++i)
	{
		scanf("%d",&x);
		printf("%lld\n",ans[x]);
	}
	return 0;
}

猜你喜欢

转载自blog.csdn.net/forever_dreams/article/details/87690998