java基础集合类——LinkedList 源码略读

1.概览

LinkedList是java的动态数组另一种实现方式,底层是基于双向链表,而不是数组。

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

LinkedList实现了动态数组与双向队列两个接口,提供了两种方法集合,可以用来实现队列、栈之类的功能。

2. 成员变量

先来看成员变量

    transient int size = 0;
    
    transient Node<E> first;
    
    transient Node<E> last;

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

链表一般就是有个head的节点就能完成对应的工作。LinkedList实现了双向链表,除了head,还有一个last节点和一个size参数,这主要是为了效率考虑,不然查询一次长度或者尾都得来一次全链路迭代,太慢了。Node内部类就不说了,非常简单的一个节点类。

3. 方法

3.1 构造方法

    
    public LinkedList() {
        // 此时first=last=null,size=0
    }
    
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }
    

3.2 添加元素

添加一个元素

    public boolean add(E e) {
        linkLast(e);
        return true;
    }
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }    

很简单的添加逻辑,再来看一下addAll的实现

    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }
    
    public boolean addAll(int index, Collection<? extends E> c) {
        checkPositionIndex(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }

        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

3.3 删除元素

    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

3.4 修改元素

    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

3.5 检索元素

    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

检索是LinkedList比较值得看的一个方法,java的实现很简单,先判断index是大于当前size的一半还是小于,如果是大于则从尾节点往前否则从首结点往后检索。从代码上看,虽然双向链表的实现让性能快了一点,但还是O(n)的耗时,我觉得后续版本的优化可以向HashMap那样,当判断LinkedList的size大于一个阈值时可以将双向链接改造为红黑树或者跳表,从而实现O(lgn)的性能,当然这样也对空间消耗更多一点。

3.6 清空元素

    public void clear() {
        // Clearing all of the links between nodes is "unnecessary", but:
        // - helps a generational GC if the discarded nodes inhabit
        //   more than one generation
        // - is sure to free memory even if there is a reachable Iterator
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }

从代码上看,LinkedList的clear方法是没有内存泄漏问题的,注意有个for循环,这里是为了gc优化。

猜你喜欢

转载自www.cnblogs.com/oreo/p/10829004.html