第一章 随机事件与概率

第一章 随机事件与概率


概率论与数理统计研究对象是随机现象:

  • 概率论:研究随机现象的模型(概率分布);
  • 数理统计:随机现象的数据收集与处理。

§1.1 随机事件及其运算

随机现象:在一定条件下并不总是出现相同的结果的现象;

随机试验:对在相同条件下可以重复的随机现象的观察、记录、实验;

样本空间:随机现象的一切可能基本结果组成的集合;\(\Omega=\{\omega\}\)\(\omega\)基本结果、又称样本点

  • 样本空间的元素可以是数也可以不是数;
  • 样本空间至少有两个样本点,仅含有两个样本点的样本空间是最简单的样本空间;
  • 从样本空间含有样本点的个数来区分:
    • 离散样本空间:样本点个数为有限个或可列个;
    • 连续样本空间:样本点个数为不可列无限个。

随机事件:随机现象的某些样本点组成的集合,简称事件;

  • 任意事件是相应样本空间的一个子集;(Venn图);

  • 当子集中某个样本点出现了,就说事件发生了;

  • 事件可以用集合表示,也可以用明白无误的语言描述;

    基本事件 由样本空间Ω中的单个元素组成的子集;
    必然事件 样本空间最大子集
    不可能事件 样本空间Ω最小子集,即空集

随机变量:用来表示随机现象的结果的变量,表示时应写明随机变量的含义;

事件间的关系

  • 包含关系:事件A发生必然导致事件B发生;
  • 相等关系;
  • 互不相容:A、B没有相同的样本点。

事件间的运算:并、交、差、余。

扫描二维码关注公众号,回复: 6700976 查看本文章
  • $A\cup B $:事件A、B中所有的样本点组成的新事件,两个事件中至少有一个发生;

  • \(A \cap B\):事件A、B中公共的样本点组成的新事件;

\(\cup_{i=1}^n A_i,\cap_{i=1}^\infty A_i\) 交并运算可以推广至无限的情况;

  • \(A \setminus B\):由在A中而不在事件B中的样本点组成的新事件;
    \[ \{X=a\}=\{X\leq a\}-\{X<a\},\{a<A\leq b\}=\{X\leq b\}-\{X\leq a\} \]

  • \(\overline{A}\) :对立事件;
    \[ A \setminus B= A \cap B^c \]

事件的运算性质

  • 交换律:A \(\cap\) B=B \(\cap\) A
  • 结合律:\((A\cup B)\cup C=A\cup(B\cup C)\)
  • 分配律:\((A\cup B)\cap C=AC\cup BC\)
  • De Morgen公式:\(\overline{\cup_{i=1}^\infty A_i}=\cup_{i=1}^\infty \overline{A_i}\)

事件域

  • 一个样本空间中某些子集及其运算结果而组成的集合类,记为\(F\),事件域要对集合的运算有封闭性,而:

    交的运算可以通过并与对立实现;
    差的运算可通过交与对立来实现;

  • 这样,并与对立是最基本的运算,于是事件域的定义如下:

    \(Ω\)为一样本空间,\(F\)\(Ω\)的某些子集所组成的集合类,如果\(F\)满足:

    • \(Ω∈F\)
    • \(A∈F\),则对立事件\(\overline{A}∈F\)
    • \(A_n∈F,n=1,2…..\),则可列并属于\(F\)

    则称\(F\)为一个事件域,又称为\(\sigma\)域 或\(\sigma\)代数。

  • 在概率论中,又称\((\Omega ,F)\) 为可测空间。


§1.2 概率的定义及其确定方法

概率的公理化定义\(Kolmogrov\)

\(\Omega\)为一个样本空间,\(F\)\(\Omega\)的某些子集组成的一个事件域,如果对任意事件\(A\in F\),定义在\(F\)上的一个实值函数\(P(A)\)满足:

  • 非负性定理\(A\in F\),则\(P(A)\geq 0\)

  • 正则性公理 \(P(\Omega)=1\)

  • 可列可加性 \(若A_1,A_2,\cdots ,A_n,\cdots互不相容,则:P(\cup_{i=1}^\infty A_i)=\sum_{i=1}^\infty (A_i)\)

则称\(P(A)\)为事件A的概率,称三元素\((\Omega,F,P)\)概率空间

确定概率的频率方法

在大量重复实验中,用频率的稳定值去获得概率

  • 与考察事件A有关的随机现象可大量重复进行;

  • 在n次重复实验中,记\(n(A)\)为事件A出现的次数,又称\(n(A)\)为事件A的频数
    \[ f_n(A)=\frac{n(A)}{n} \]

  • 为事件A出现的频率

  • 随着实验重复次数n的增加,频率\(f_n(A)\)会稳定在某一常数a 附近,这个常数称为频率的稳定值

确定概率的古典方法

  • 所涉及到的随机现象只是有限个样本点;

  • 每个样本点发生的可能性相等;

  • 若事件A含k个样本点,则事件A的概率为
    \[ P(a)=\frac{事件A所含样本点个数}{\Omega中所有样本点个数}=\frac kn \]

在古典方法中,求事件A的概率归结为计算A中含有的样本点个数和\(\Omega\)中含有的样本点的总数。

  1. 抽样模型
  2. 放回抽样
  3. 盒子模型
  4. 生日问题

确定概率的几何方法

确定概率的主观方法

猜你喜欢

转载自www.cnblogs.com/rrrrraulista/p/11117896.html