Pytorch之卷积神经网络(Mnist)学习

Pytorch之Mnist学习

以前写的代码太差,而代码的书写和可读性很重要,同时想掌握两个Deep Learning的框架,在此学习记录。阅读的代码是pytorch官方给的例子:https://github.com/pytorch/examples

1、Argparse库的使用

Argparse库的使用很频繁,一般是写在开头,主要是用于命令行(cmd)中运行python文件的一些参数设置(如:batch size, learning rate等)。

parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')

设置了命令行参数,即可以在命令行里面输入对应的操作设置。如果在命令行运行时,没有给出对应的参数,即使用默认参数。
如cd到目标文件的目录下,可以如下操作,就可以得到所有的设置的参数设置:

python main.py --help

在这里插入图片描述

2、数据集

对于一些经典的数据集的获取方式可以直接采用torchvision.datasets,如Mnist数据集:torchvision.datasets.MNIST。
https://pytorch.org/docs/stable/torchvision/datasets.html?highlight=datasets mnist#torchvision.datasets.MNIST
同时用torch.utils.data.DataLoader进行对数据集进行加载。
https://pytorch.org/docs/stable/data.html?highlight=torch utils data dataloader#torch.utils.data.DataLoader

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
		datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),batch_size=args.test_batch_size, shuffle=True, **kwargs)

其中注意到的细节是:当使用gpu的时候,就用子进程来加载这个数据集(可能需要下载)
同时为其分配了一定的内存,但是不建议这样操作,一般就默认设置为False。https://discuss.pytorch.org/t/what-is-the-disadvantage-of-using-pin-memory/1702
详细中文解释:https://blog.csdn.net/u014380165/article/details/79058479

同时另一个细节:transform的配置,也就是图像的预处理过程,进行了归一化。
详细中文解释:https://www.jianshu.com/p/13e31d619c15

但是归一化为什么mean和std的设置是如此:https://discuss.pytorch.org/t/normalization-in-the-mnist-example/457/6
在这里插入图片描述

3、网络搭建

一般是创建一个class来使用,并且需要将网络每一层的过程首先定义,并看是否有gpu将网络放在gpu上。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

直接使用torch的函数nn.Conv2d(权重在此进行自动初始化了)等等,并且需要继承nn.Module类。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x) 
        return F.log_softmax(x, dim=1)

在这里插入图片描述

4、参数更新

因为继承了model类,直接通过参数更新。

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

注意到model.train()设置为训练,output = model(data)加载数据到之前定义的网络中,梯度清0,求损失,反向传播,一步一步的执行。

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

5、代码

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
    
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)


    model = Net().to(device)
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)

    if (args.save_model):
        torch.save(model.state_dict(),"mnist_cnn.pt")
        
if __name__ == '__main__':
    main()

发布了27 篇原创文章 · 获赞 15 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/qq_42192910/article/details/100666041