一、数据集介绍
【数据集】无人机车辆识别数据集 18524 张,目标检测,包含YOLO/VOC格式标注。
数据集中包含10种分类:names: ['boat', 'camping car', 'car', 'motorcycle', 'other', 'pickup', 'plane', 'tractor', 'truck', 'van']。
数据集来自国内外图片网站、无人机航拍视频截图;
可用于无人机车辆分类检测、监控车辆分类检测等。
检测场景为街道、高速公路、停车场、产业园区内等有车辆行驶的场景,可用于智慧交通监管等,服务于道路车辆监管、车流量管控、道路拥塞控制、车辆分类别限流等。
文章底部或主页私信获取数据集~
1、数据概述
无人机车辆识别的重要性

-
实时监控与交通管理:
无人机车辆分类识别技术能够实现对交通流量的实时监控和精确统计,为交通管理部门提供及时、准确的交通信息。这有助于优化交通信号控制,缓解交通拥堵,提高道路通行效率。 -
大型活动安保:
在大型活动或体育赛事中,无人机车辆分类识别技术可以用于监控人流和车流,及时发现并处理安全隐患,确保活动顺利进行。 -
智慧交通系统建设:
无人机车辆分类识别技术是智慧交通系统的重要组成部分。通过整合无人机、物联网、大数据等技术,可以实现交通信息的实时采集、处理和共享,为城市交通管理提供智能化、精细化的解决方案。 -
事故预警与应急响应:
通过无人机快速识别车辆类型和行驶状态,可以及时发现潜在的交通事故风险,如车辆违规行驶、超速等,从而提前进行预警和干预。在事故发生后,无人机也能迅速到达现场,为救援人员提供准确的车辆信息和位置,加速应急响应。
基于YOLO的无人机车辆识别算法
-
适应复杂环境:
- 无人机在执行任务时,往往会面临复杂的飞行环境和多变的天气条件。YOLO算法具有较强的鲁棒性和适应性,能够在一定程度上应对这些挑战。
- 例如,在恶劣天气(如雾霾、雨雪等)下,YOLO算法仍能保持较高的车辆识别精度,为无人机提供可靠的信息支持。
-
提升任务效率:
- 通过YOLO算法实现无人机车辆分类识别,可以显著提升无人机在执行交通监控、灾害救援等任务时的效率。
- 无人机能够快速识别并分类地面车辆,为相关部门提供及时的交通信息和灾害评估报告,有助于提升整体任务的执行效率。
该数据集含有 18524 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试街道、高速公路、停车场、产业园区内等有车辆行驶的场景进行无人机车辆分类识别。
图片格式为jpg格式,标注格式分别为:
YOLO:txt
VOC:xml
数据集均为手工标注,保证标注精确度。
2、数据集文件结构
aerial_vehicle/
——test/
————Annotations/
————images/
————labels/
——train/
————Annotations/
————images/
————labels/
——valid/
————Annotations/
————images/
————labels/
——data.yaml
- 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
- Annotations文件夹为Pascal VOC格式的XML文件 ;
- images文件夹为jpg格式的数据样本;
- labels文件夹是YOLO格式的TXT文件;
- data.yaml是数据集配置文件,包含无人机车辆分类检测的目标分类和加载路径。
Annotations目录下的xml文件内容如下:
<annotation>
<folder></folder>
<filename>Potsdam_2_11_RGB-6-0_jpg.rf.81ce7215d7b9bf41fdab2d8977914d83.jpg</filename>
<path>Potsdam_2_11_RGB-6-0_jpg.rf.81ce7215d7b9bf41fdab2d8977914d83.jpg</path>
<source>
<database>roboflow.com</database>
</source>
<size>
<width>512</width>
<height>512</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>car</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<occluded>0</occluded>
<bndbox>
<xmin>1</xmin>
<xmax>57</xmax>
<ymin>193</ymin>
<ymax>321</ymax>
</bndbox>
</object>
<object>
<name>car</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<occluded>0</occluded>
<bndbox>
<xmin>6</xmin>
<xmax>134</xmax>
<ymin>254</ymin>
<ymax>382</ymax>
</bndbox>
</object>
<object>
<name>car</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<occluded>0</occluded>
<bndbox>
<xmin>105</xmin>
<xmax>233</xmax>
<ymin>241</ymin>
<ymax>369</ymax>
</bndbox>
</object>
<object>
<name>car</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<occluded>0</occluded>
<bndbox>
<xmin>182</xmin>
<xmax>310</xmax>
<ymin>273</ymin>
<ymax>401</ymax>
</bndbox>
</object>
</annotation>
3、数据集适用范围
- 目标检测场景,无人机航拍检测
- yolo训练模型或其他模型
- 街道、高速公路、停车场、产业园区内等有车辆行驶的场景
- 可用于智慧交通监管等,服务于道路车辆监管、车流量管控、道路拥塞控制、车辆分类别限流等
4、数据集标注结果
4.1、数据集内容
- 多角度场景:全部都是无人机视角数据样本;
- 标注内容:names: ['boat', 'camping car', 'car', 'motorcycle', 'other', 'pickup', 'plane', 'tractor', 'truck', 'van'],总计10个分类;
- 图片总量:18524 张图片数据;
- 标注类型:含有Pascal VOC XML格式和yolo TXT格式;
5、训练过程
5.1、导入训练数据
下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。
下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。
在ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。
data目录结构如下:
data/
——Annotations/ //存放xml文件
——images/ //存放jpg图像
——imageSets/
——labels/
整体项目结构如下所示:
5.2、数据分割
首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。
import os
import random
trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
5.3、数据集格式化处理
在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。
convert_annotation函数
-
这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。
-
它打开XML文件,解析树结构,提取图像的宽度和高度。
-
然后,它遍历每个目标对象(
object
),检查其类别是否在classes
列表中,并忽略标注为困难(difficult
)的对象。 -
对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用
convert
函数将坐标转换为YOLO格式。 -
最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ['boat', 'camping car', 'car', 'motorcycle', 'other', 'pickup', 'plane', 'tractor', 'truck', 'van'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text),
float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
5.4、修改数据集配置文件
在ultralytics-main目录下创建一个data.yaml文件
train: data/train.txt
val: data/val.txt
test: data/test.txt
nc: 10
names: ['boat', 'camping car', 'car', 'motorcycle', 'other', 'pickup', 'plane', 'tractor', 'truck', 'van']
5.5、执行命令
执行train.py
model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)
也可以在终端执行下述命令:
yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0
5.6、模型预测
你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。
代码如下:
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径
# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path)
# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
# results = model(frame)
results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)
results[0].names[0] = "道路积水"
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Write the annotated frame to the output file
out.write(annotated_frame)
# Display the annotated frame (optional)
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()
也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:
yolo predict model="best.pt" source='demo.jpg'
6、获取数据集
文章底部或主页私信获取数据集~
二、基于QT的目标检测可视化界面
1、环境配置
# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
2、使用说明
界面功能介绍:
- 原视频/图片区:上半部分左边区域为原视频/图片展示区;
- 检测区:上半部分右边区域为检测结果输出展示区;
- 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等;
- 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
- 置信度阈值:自定义检测区的置信度阈值,可以通过滑动条的方式设置;
- 文件上传:选择目标文件,包含JPG格式和MP4格式;
- 开始检测:执行检测程序;
- 停止:终止检测程序;
3、预测效果展示
3.1、图片检测
切换置信度再次执行:
上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。
3.2、视频检测
3.3、日志文本框
4、前端代码
class MyWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self.init_gui()
self.model = None
self.timer = QtCore.QTimer()
self.timer1 = QtCore.QTimer()
self.cap = None
self.video = None
self.file_path = None
self.base_name = None
self.timer1.timeout.connect(self.video_show)
def init_gui(self):
self.folder_path = "model_file" # 自定义修改:设置文件夹路径
self.setFixedSize(1300, 650)
self.setWindowTitle('目标检测') # 自定义修改:设置窗口名称
self.setWindowIcon(QIcon("111.jpg")) # 自定义修改:设置窗口图标
central_widget = QtWidgets.QWidget(self)
self.setCentralWidget(central_widget)
main_layout = QtWidgets.QVBoxLayout(central_widget)
# 界面上半部分: 视频框
topLayout = QtWidgets.QHBoxLayout()
self.oriVideoLabel = QtWidgets.QLabel(self)
# 界面下半部分: 输出框 和 按钮
groupBox = QtWidgets.QGroupBox(self)
groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')
bottomLayout = QtWidgets.QHBoxLayout(groupBox)
main_layout.addWidget(groupBox)
btnLayout = QtWidgets.QHBoxLayout()
btn1Layout = QtWidgets.QVBoxLayout()
btn2Layout = QtWidgets.QVBoxLayout()
btn3Layout = QtWidgets.QVBoxLayout()
# 创建日志打印文本框
self.outputField = QtWidgets.QTextBrowser()
self.outputField.setFixedSize(530, 180)
self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')
self.detectlabel = QtWidgets.QLabel(self)
self.oriVideoLabel.setFixedSize(530, 400)
self.detectlabel.setFixedSize(530, 400)
self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')
self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')
topLayout.addWidget(self.oriVideoLabel)
topLayout.addWidget(self.detectlabel)
main_layout.addLayout(topLayout)
5、代码获取
更多其他数据集点击这里!
注:以上均为原创内容,转载请私聊!!!