数列的递推公式求通项(特征方程)

如: an+c1an1+c2an2+ckank=bn (n>k-1)
( c1,c2ck 为常数,k为正整数)的递推关系为k阶线性常系数递推关系
a0=d0,a1=d1,,ak1=dk1 称为初值条件

1. 当 bn =0时

bn =0,时 an+c1an1+c2an2+ckank=0 称为k阶线性常系数齐次递推关系
如斐波那契数列 FnFn1Fn2=0 (n>2)称为二阶线性常系数齐次递推关系

引入特征方程的定义
给定 an+c1an1+c2an2+ckank=0
C(x)=xn+c1xn1+c2xn2++ck 称为性常系数齐次递推关系的特征多项式,而称C(x)=0为特征方程,方程的根称为特征根
如斐波那契数列 FnFn1Fn2=0 ,(n>2)的特征方程为 x2x1=0

1. 为实数根时
anan112an2=0,a0=3,a1=26 的解
: 特征方程 x^{2}-x-1=0
根为: x=4 x=-3
故通解为 an=A14n+A2(3)n,n0
由初值条件 3=A1+A2 26=A14+A2(3)
解得 A1=5 A2=2
所求得解 an=54n2(3)n

2. 有共轭复根时
α1 α2 是一对共轭复根则有
α1=ρ(cosθ+isinθ) α2=α1¯=ρ(cosθisinθ)
A1αn1+A2αn2
= A1ρn(cosθ+isinθ)n+A2ρn(cosθisinθ)n
= A1ρn(cosnθ+isinnθ)+A2ρn(cosnθisinnθ)
= (A1+A2)ρncosnθ+i(A1A2)ρnsinnθ
= Aρncosnθ+Bρnsinnθ
其中 A=A1+A2 B=i(A1A2)
计算时,可先求出各对共轭复根,再求A,B

例如 求 anan1+an2=0,a0=1,a1=1 的解
: 特征方程 α2α+1=0

根为: α=12±32i=cosπ3+isinπ3

故通解为 an=A1αn1+A2αn2=Acosnπ3+Bsinnπ3

由初值条件 1=A 1=A12+B32

解得 A=1 B=33

所求解为 an=cosnπ3+33sinnπ3

3. 有重根时

an=(B0+B1n++Bk1nk1)αn

例如求 an2an1+an2=0,a1=2,a2=3 的解
:特征方程为 x^{2}-2x+1=0 解得x=1为二重根
故通解为 an=(A1+A2n)1n=A1+A2n
由初值条件 2=A1+A2 3=A1+A22
解得 A1=1 A2=1
所求解为 an=1+n , n1

总之
α 是特征方程的单根,则递推关系的解中含有项
an=Aan
α 是特征方程的k重根,则递推关系的解中含有项
an=(B0+B1n++Bk1nk1)αn
α1,α2 是一对k重共轭复根,且 α2=α1¯=ρ(cosθisinθ) 则递推关系的解中含有项
an=(B0+B1n++Bk1nk1)ρncosnθ+i(C0+C1n++Ck1nk1)ρnsinnθ

2. 当 bn0

bn0 ,时 an+c1an1+c2an2+ckank=bn 称为k阶线性常系数非齐次递推关系
an 的解可表示为齐次关系的解郁非齐次关系的解之和
而齐次递推关系的解渴由特征方程特征根的方法求得,所以我们只要求解非齐次递推关系的一个特解即可
非齐次的解法和非齐次微分方程的通解解法较为类似可以结合二者进行理解
1. 待定系数法1
bn=rnPm(n) ,其中 Pm(n) 为n的m次多项式(如a+bn为一次多项式),则可设非齐次递推关系的解为
βn=rnnkqm(n)
其中 qm(n) 为系数待定的 qm(n)=Bmnm+Bm1nm1++B1n1+B0
其中k为r作为特征根的个数,即

k=0k=krrk

如求解 anan112an2=3n,a0=3,a1=26 的解
: 特征方程 x2x12=0
根为: x=4 x=-3
故齐次关系通解为 an=A14n+A2(3)n,n0
自由项为 bn=3n ,所以可设特解为 an=B3n
那么代入递推关系式有 B3nB3n112B3n2=3n
解得 B=32
故非齐次关系通解为 an=A14n+A2(3)n323n,n0
由初值条件 3=A1+A232 26=A14+A2(3)323
解得 A1=447 A2=2514
所求解为
an=4474n2514(3)n323n,n0

再如求 an+3an110an2=2n(n+5)
:特征方程 x2+3x10=0
根为: x=-5 x=2
根据自由项: bn=22(n+5) ,所以特解设为
an=n1(B0+B1n)2n
代入递推关系式
解得
an=A12n+A2(5)n(8749n+17n2)2n

2. 待定系数法2
bn=rnPm(n)sinθ bn=rnPm(n)cosθ ,其中 Pm(n) 为n的m次多项式(如a+bn为一次多项式),则可设非齐次递推关系的解为
βn=rnnk[qm(n)sinnθ+hm(n)sinnθ]
其中 qm(n) hm(n) 为系数待定的
qm(n)=Bmnm+Bm1nm1++B1n1+B0
hm(n)=Cmnm+Cm1nm1++C1n1+C0
其中k为r作为特征根的个数,即

k=0k=kr(cosθ+isinθ)r(cosθ+isinθ)k

如求 an3an1+2an2=3sin(nπ2),a0=0,a1=1 的解
: 特征方程 x23x+2=0
根为:x=1 x=2
故齐次关系的通解为 an=A11n+A222,n0
由于自由项: bn=3sin(nπ2) ,所以特解为
an=Bcos(nπ2)+Csin(nπ2)
代入递推关系式解得 B=910 C=310
故通解为
an=A1+A222910cos(nπ2)310sin(nπ2),n0
再由初值条件可得
an=151061022910cos(nπ2)310sin(nπ2),n0

3. 非齐次递推关系齐次化法
bn=r ,r为常数
an+c1an1+c2an2+ckank=r
an1+c1an2+c2an3+ckank1=r
两式相减则变为齐次递推关系用特征方程求解
bn=rn
an+c1an1+c2an2+ckank=rn
an1+c1an2+c2an3+ckank1=rn1
式子二乘以r,两式相减,变为齐次关系式,用特征方程求解
如求 anan16an2=3n,a0=5,a1=2 的解
: 有 anan16an2=3n
an1an26an3=3n1
两式相减得
an4an13an2+18an3=0,a2=41
特征方程为 x^{3}-x^{2}-3x+18=0
解得 x=-2,x=3(为2重根)
an=A(2)n+(B+Cn)3n
由初值条件得
an=7425(2)n+(5125+35n)3n

本文参考太原理工大学魏毅强教授组合数学课件

猜你喜欢

转载自blog.csdn.net/ftx456789/article/details/77581458