信号与系统(Python) 学习笔记 (8) 离散系统z域分析 -- z变换

8. 离散系统 z 域分析

取样
还原(有条件)
连续
离散

             f ( t ) h ( t ) f ( k ) h ( k )    { F ( j ω ) H ( j ω ) F ( s ) H ( s ) F ( z ) H ( z ) \begin{aligned}连续 \;\; &\Big\vert\;\; 离散 \\ 时域\; f(t)\star h(t) &\Big\vert f(k) \star h(k) \\ 变换域\; \begin{cases} F(j\omega)\cdot H(j\omega) \\ F(s) \cdot H(s) \end{cases} &\Big\vert F(z) \cdot H(z) \end{aligned}


8.1. z 变换

  • 拉氏变换把连续系统微分方程转换为代数方程,同样地,也可以通过一种称为z变换数学工具,把差分方程转换为代数方程。

8.1.1. z 变换 定义

  • z变换 导出

  • 对连续信号进行均匀冲激取样后,就得到离散信号。

  • 取样信号:
    f s ( t ) = f ( t ) δ T ( t ) = k = f ( k T ) δ ( t k T ) f_s(t) = f(t) \delta_T(t) = \sum^{\infty}_{k=-\infty}f(kT)\delta(t-kT)

  • 两边取双边拉普拉斯变换,时移性质,得:
    F S b ( s ) = k = f ( k T ) e k T s F_{Sb}(s) = \sum^{\infty}_{k=-\infty} f(kT)e^{-kTs}

  • z = e s T {\color{red}z=e^{sT}} , 上式将成为复变量 z z 的函数, 用 F ( z ) F(z) 表示; f ( k T ) f ( k ) f(kT)\to f(k) , 得
    F b ( z ) = k = f ( k ) z k    f ( k ) z F_b(z) = \sum^{\infty}_{k=-\infty} f(k) z^{-k}\; 称为 {\color{blue}序列 f(k)}的{\color{red}双边 z 变换}
    F ( z ) = k = 0 f ( k ) z k    f ( k ) z F(z) = \sum^{\infty}_{{\color{red}k=0}} f(k) z^{-k}\; 称为 {\color{blue}序列 f(k)}的{\color{red}单边 z 变换}

  • f ( k ) f(k) 为因果序列,则单边、双边 z z 变换相等,否则不同。今后在不致混淆的情况下,统称它们为 z z 变换。

  • 与拉普拉斯变换相同,双边变换会涉及到多值的问题(双边z 变换必须标明收敛域),所以一般使用单边变换。

  • 表示:
    F ( z ) = Z [ f ( k ) ] F(z) = \mathcal{Z}[f(k)]
    f ( k ) = Z 1 [ F ( z ) ] f(k) = \mathcal{Z}^{-1}[F(z)]
    f ( k ) F ( z ) f(k) \longleftrightarrow F(z)

8.1.2. z 变换 收敛域

  • 当幂级数收敛时, z z 变换才存在,即满足绝对可和条件

k = f ( k ) z k < \sum^{\infty}_{k=-\infty} \big\lvert f(k) z^{-k}\big\rvert < \infty

  • 它是序列 f ( k ) f(k) z z 变换存在的充要条件

  • 定义:

    • 对于序列 f ( k ) f(k) , 满足
      k = f ( k ) z k < \sum^{\infty}_{k=-\infty} \big\lvert f(k) z^{-k}\big\rvert < \infty
    • 所有 z z 值组成的集合称为其 z z 变换 F ( z ) F(z) 收敛域
  • 例: 因果序号 f ( k ) = a k ε ( k ) f(k) = a^k \varepsilon(k) z z 变换 ( a a 为常数)。
    F ( z ) = k = 1 a k z k = lim N k = 1 N ( a z ) k = lim N 1 ( a z 1 ) N + 1 1 a z 1 F(z) = \sum^{\infty}_{k=1}a^kz^{-k} = \lim_{N\to\infty}\sum^{N}_{k=1}(az^{-})^k = \lim_{N\to\infty} \frac{1-(az^{-1})^{N+1}}{1-az^{-1}}

    • 仅当 a z 1 < 1 \lvert az^{-1}\rvert <1 , 即 z > a \vert z\vert > \vert a \vert 时, 其 z 变换存在。
    • F ( z ) = z z a F(z) = \displaystyle \frac{z}{z-a}
    • 收敛域为 z > a \vert z\vert >\vert a \vert (某个圆之外)
  • 注意

    • 双边z 变换必须标明收敛域
    • 对单边z变换,其收敛域是某个圆外的区域,可省略。
  • 结论:

F b ( z ) + f ( k ) F ( z ) f ( k ) \begin{aligned}双边 F_b(z) + 收敛域 \longleftarrow & \longrightarrow f(k) \\ 单边 F(z) \longleftarrow & \longrightarrow f(k) \end{aligned}

  • 离散序列的收敛域情况分类
序列特性 收敛域特性 f ( k ) = f(k)=
有限长序列 常为整个平面 常为整个平面 δ ( k ) ,    ε ( k + 1 ) ε ( k 2 ) \delta(k),\;\varepsilon(k+1)-\varepsilon(k-2)
因果序列 某个圆外区域 某个圆外区域 a k ε ( k ) a^k\varepsilon(k)
反因果序列 某个圆内区域 某个圆内区域 b k ε ( k 1 ) b^k\varepsilon(-k-1)
双边序列 (若存在)环状区域 (若存在)环状区域 { b k ,    k < 0 a k ,    k 0 , a < b \begin{aligned}\begin{cases}b^k,\; &k<0 \\ a^k ,\; & k\geq 0 \end{cases}, \vert a \vert < \vert b \vert \end{aligned}
双边序列 (不存在)环状区域 (不存在)环状区域 { a k ,    k < 0 b k ,    k 0 , a < b \begin{aligned}\begin{cases}a^k,\; &k<0 \\ b^k ,\; & k\geq 0 \end{cases}, \vert a \vert < \vert b \vert \end{aligned}

8.1.3. 常用序列的z变换

δ ( k ) 1 ,    z δ ( k m ) z m ,    z > 0 ε ( k ) z z 1 ,    z > 1 ε ( k 1 ) z z 1 ,    z < 1 a k ε ( k ) z z a ,    z > a a k ε ( k 1 ) z z a ,    z < a \begin{aligned} \displaystyle \delta(k) \longleftarrow & \longrightarrow 1,\; 整个 z 平面 \\ \delta(k-m) \longleftarrow & \longrightarrow z^{-m},\; \lvert z \rvert > 0 \\ \varepsilon(k)\longleftarrow & \longrightarrow \frac{z}{z-1},\; \lvert z \rvert > 1 \\ -\varepsilon(-k-1)\longleftarrow & \longrightarrow \frac{z}{z-1},\; \lvert z \rvert < 1 \\ a^k \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert > \lvert a \rvert \\ -a^k \varepsilon(-k-1) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert < \lvert a \rvert \\\end{aligned}

8.1.4. z变换 性质

  • 说明:z变换性质,若无特殊说明,对单边和双边z变换均适用。

线性性质


  • f 1 ( k ) F 1 ( z ) ,    a 1 , a 2 ,    α 1 < z < β 1 f 2 ( k ) F 2 ( z ) ,    a 1 , a 2 ,    α 2 < z < β 2 a 1 f 1 ( k ) + a 2 f 2 ( k ) a 1 F 1 ( z ) + a 2 F 2 ( z ) ,    max ( α 1 , α 2 ) < z < max ( β 1 , β 2 ) \begin{aligned} \displaystyle f_1(k) \longleftarrow & \longrightarrow F_1(z),\; & 有常数a_1,a_2,\; \alpha_1<\lvert z \rvert <\beta_1 \\ f_2(k) \longleftarrow & \longrightarrow F_2(z),\; & 有常数a_1,a_2,\; \alpha_2<\lvert z \rvert <\beta_2 \\ a_1f_1(k) + a_2f_2(k) \longleftarrow & \longrightarrow a_1F_1(z) + a_2F_2(z) ,\;& \max(\alpha_1,\alpha_2)<\lvert z \rvert <\max(\beta_1, \beta_2)\\ \end{aligned}

  • 其收敛域至少是 F 1 ( z ) F_1(z) F 2 ( z ) F_2(z) 收敛域的相交部分

移序性质

  • 双边z变换的移位:


    • f ( k ) F ( z ) ,    m > 0 ,    α < z < β f ( k ± m ) z ± m F ( z ) ,    α < z < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \alpha<\lvert z \rvert <\beta \\ f(k\pm m) \longleftarrow & \longrightarrow z^{\pm m}F(z) ,\;& \alpha<\lvert z \rvert <\beta \\ \end{aligned}
  • 单边z变换的移位:


    • f ( k ) F ( z ) ,    m > 0 ,    z > α f ( k m ) z m F ( z ) + k = 0 m 1 f ( k m ) z k ,    z > α f ( k + m ) z + m F ( z ) k = 0 m 1 f ( k ) z m k ,    z > α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \lvert z \rvert >\alpha \\ f(k - m) \longleftarrow & \longrightarrow z^{- m}F(z) + \sum^{m-1}_{k=0}f(k-m)z^{-k},\;& \lvert z \rvert >\alpha \\ f(k + m) \longleftarrow & \longrightarrow z^{+ m}F(z) - \sum^{m-1}_{k=0}f(k)z^{m-k},\;& \lvert z \rvert >\alpha \\ \end{aligned}

右移

左移

  • 因果序列z变换的移位:

    • f ( k ) F ( z ) ,    m > 0 ,    z > α f ( k m ) ε ( k m ) z m F ( z ) ,    z > α f ( k m ) z m F ( z ) ,    z > α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 整数 m>0,\; \lvert z \rvert >\alpha \\ f(k - m)\varepsilon(k-m) \longleftarrow & \longrightarrow z^{- m}F(z),\;& \lvert z \rvert >\alpha \\ f(k - m) \longleftarrow & \longrightarrow z^{- m}F(z),\;& \lvert z \rvert >\alpha \\ \end{aligned}

反折性质

  • k域反转(仅适用双边z变换):

    • f ( k ) F ( z ) ,    α < z < β f ( k ) F ( z 1 ) ,    1 β < z < 1 α \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ f(-k) \longleftarrow & \longrightarrow F(z^{-1}) ,\;& \frac{1}{\beta}<\lvert z \rvert <\frac{1}{\alpha} \\ \end{aligned}

尺度变换特性

  • 序列乘 α k ,    α 0 \alpha^k,\; \alpha \neq 0


  • f ( k ) F ( z ) ,    a ,    α < z < β a k f ( k ) F ( z a ) ,    a α < z < a β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & 有常数a,\; \alpha<\lvert z \rvert <\beta \\ a^kf(k) \longleftarrow & \longrightarrow F(\frac{z}{a}) ,\;& \lvert a \rvert \alpha<\lvert z \rvert< \lvert a \rvert \beta\\ \end{aligned}

微分特性

  • 序列乘 k k


  • f ( k ) F ( z ) ,    α < z < β k f ( k ) ( z ) d d z F ( z ) ,    α < z < β k 2 f ( k ) ( z ) d d z [ ( z ) d d z F ( z ) ] ,    α < z < β k m f ( k ) ( z ) d d z [ ( z ) d d z [ ( z ) d d z F ( z ) ] ] m ,    α < z < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ kf(k) \longleftarrow & \longrightarrow (-z)\frac{d}{dz} F(z) ,\;& \alpha<\lvert z \rvert <\beta \\ k^2f(k) \longleftarrow & \longrightarrow (-z)\frac{d}{dz} \big[(-z)\frac{d}{dz} F(z)\big] ,\;& \alpha<\lvert z \rvert <\beta \\ k^mf(k) \longleftarrow & \longrightarrow \underset{m次}{(-z)\frac{d}{dz} \Big[\cdots (-z)\frac{d}{dz} \big[(-z)\frac{d}{dz} F(z)\big] \cdots \Big]} ,\;& \alpha<\lvert z \rvert <\beta \\ \end{aligned}

时域卷积

  • 若:
    f 1 ( k ) F 1 ( z ) ,    α 1 < z < β 1 f 2 ( k ) F 2 ( z ) ,    α 2 < z < β 2 f 1 ( k ) f 2 ( k ) F 1 ( z ) F 2 ( z ) ,    max ( α 1 , α 2 ) < z < min ( β 1 , β 2 ) \begin{aligned} \displaystyle f_1(k) \longleftarrow & \longrightarrow F_1(z),\; & \alpha_1<\lvert z \rvert <\beta_1 \\ f_2(k) \longleftarrow & \longrightarrow F_2(z),\; & \alpha_2<\lvert z \rvert <\beta_2 \\ f_1(k) \star f_2(k) \longleftarrow & \longrightarrow F_1(z) \cdot F_2(z) ,\;& \max(\alpha_1,\alpha_2)<\lvert z \rvert <\min(\beta_1, \beta_2)\\ \end{aligned}
  • Remark:
    1. 收敛域一般为 F 1 ( z ) F_1(z) F 2 ( z ) F_2(z) 收敛域的相交部分;
    2. 对单边z变换,要求: f 1 ( k ) f_1(k) f 2 ( k ) f_2(k) 为因果序列。

部分和


  • f ( k ) F ( z ) ,    α < z < β i = k f ( i ) z z 1 F ( z ) ,    max ( α , 1 ) < z < β f ( k ) ε ( k ) z z 1 F ( z ) ,    max ( α , 1 ) < z < β \begin{aligned} \displaystyle f(k) \longleftarrow & \longrightarrow F(z),\; & \alpha<\lvert z \rvert <\beta \\ \sum^{k}_{i=-\infty}f(i) \longleftarrow & \longrightarrow \frac{z}{z-1}F(z) ,\;& \max(\alpha,1)<\lvert z \rvert <\beta \\ f(k)\star \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-1}F(z) ,\;& \max(\alpha,1)<\lvert z \rvert <\beta \\ \end{aligned}

8.1.5. 初值 终值 定理

  • 初值定理适用于右边序列,即适用于 k < M k<M ( M M 为整数)时 f ( k ) = 0 f(k)=0 的序列。由象函数直接求序列的初值 f ( M ) , f ( M + 1 ) , f(M),f(M+1), \cdots 而不必求得原序列。

  • 初值定理:

    • 如果序列在 k < M k<M 时, f ( k ) = 0 f(k)=0 f ( k ) F ( z ) f(k)\leftrightarrow F(z) α < z < \alpha<\lvert z\rvert<\infty
    • 则序列的初值:
      f ( M ) = lim z z m F ( z ) f(M) = \lim_{z\to\infty} z^m F(z)
    • 对因果序列 f ( k ) f(k) :
      f ( 0 ) = lim z F ( z ) f(0) = \lim_{z\to\infty} F(z)
  • 终值定理:

    • 如果序列存在终值,即:
      f ( ) = lim k F ( k ) f(\infty) =\lim_{k\to \infty} F(k)
    • 则序列的终值:
      f ( ) = lim z 1 z 1 z F ( z ) = lim z 1 ( z 1 ) F ( z ) f(\infty) = \lim_{z\to1} \frac{z-1}{z}F(z) = \lim_{z\to1}(z-1) F(z)
    • 注意:收敛域要求含单位圆。

8.1.6. 逆z变换

  • F ( z ) F(z) f ( k ) f(k)

  • F ( z ) F(z) 的逆z变换:

f ( k ) = 1 2 π j c F ( z ) z k 1 d z ,    < k < f(k) = \frac{1}{2\pi j} \oint_c F(z) z^{k-1} dz, \; -\infty < k < \infty

  • 逆变换的计算方法:

    1. 反演积分法(留数法);
    2. 幂级数展开法;有局限性
    3. 部分分式展开法;
    4. 用 z 变换性质求逆 z 变换。组合使用
  • 一般而言,双边序列 f ( k ) f(k) 可分解为因果序列 f 1 ( k ) f_1(k) 和反因果序列 f 2 ( k ) f_2(k) 两部分,即
    f ( k ) = f 2 ( k ) + f 1 ( k ) = f ( k ) ε ( k 1 ) + f ( k ) ε ( k ) f(k) = f_2(k) + f_1(k) = f(k) \varepsilon(-k-1)+f(k)\varepsilon(k)

  • 相应地,其z变换也分为两部分
    F ( z ) = F 2 ( z ) + F 1 ( z ) ,    α < z < β F(z) = F_2(z) + F_1(z),\; \alpha<\lvert z \rvert <\beta

    • 其中:
      F 1 ( z ) = Z [ f ( k ) ε ( k ) ] = k = 0 f ( k ) z k ,    z > α F_1(z) = \mathcal{Z} \big[f(k) \varepsilon(k)\big] = \sum^{\infty}_{k=0} f(k) z^{-k},\; \lvert z \rvert >\alpha
      F 2 ( z ) = Z [ f ( k ) ε ( k 1 ) ] = k = 1 f ( k ) z k ,    z < β F_2(z) = \mathcal{Z} \big[f(k) \varepsilon(-k-1)\big] = \sum^{-1}_{k=-\infty} f(k) z^{-k},\; \lvert z \rvert <\beta
  • 已知象函数 F ( z ) F(z) 时,根据给定的收敛域不难由 F ( z ) F(z) 分解为 F 1 ( z ) F_1(z) F 2 ( z ) F_2(z) ,分别求对应的原序列 f 1 ( k ) f_1(k) f 2 ( k ) f_2(k) ,根据线性性质,将两者相加原序列 f ( k ) f(k)

  • 幂级数展开法

    • 根据z变换的定义,因果序列和反因果序列的象函数分别是 z 1 z^{-1} z z 的幂级数; 其系数就是相应的序列值。
    • 降幂排列
      F 1 ( z ) = k = 0 f 1 ( k ) z k = f ( 0 ) + f ( 1 ) z 1 + f ( 2 ) z 2 + F_1(z) = \sum^{\infty}_{k=0} f_1(k) z^{-k} = f(0)+f(1)z^{-1} + f(2)z^{-2}+\cdots
      f ( k ) = { f ( 0 ) , f ( 1 ) , f ( 2 ) , } f(k) = \{f(0), f(1), f(2), \cdots \}
    • 升幂排列
      F 2 ( z ) = k = 1 f 2 ( k ) z k = f ( 1 ) z 1 + f ( 2 ) z 2 + F_2(z) = \sum^{-1}_{k=-\infty} f_2(k) z^{-k} = f(-1)z^{1} + f(-2)z^{2}+\cdots
      f ( k ) = { , f ( 3 ) , f ( 2 ) , f ( 1 ) } f(k) = \{\cdots, f(-3), f(-2) ,f(-1) \}
    • 原序列通常难以写成闭合形式
  • 部分分式展开法
    F ( z ) = B ( z ) A ( z ) = b m z m + b m 1 z m 1 + + b 1 z + b 0 z n + a n 1 z n 1 + + a 1 z + a 0 ,    m n F(z) = \displaystyle \frac{B(z)}{A(z)} = \displaystyle \frac{b_m z^m + b_{m-1}z^{m-1} + \cdots + b_1 z + b_0}{z^n + a_{n-1}z^{n-1} + \cdots +a_1z+a_0}, \; m\leq n

    1. F ( z ) F(z) 单极点 ,且不为零
      F ( z ) z = K 0 z + K 1 z z 1 + + K i z z i + + K n z z n \displaystyle {\color{blue}\frac{F(z)}{z}} = \frac{K_0}{z}+\frac{K_1}{z-z_1}+ \cdots + \frac{K_i}{z-z_i}+ \cdots + \frac{K_n}{z-z_n}
      K i = ( z z i ) F ( z ) z z = z i K_i = (z - z_i) \frac{F(z)}{z} \big\vert _{z=z_i}
      F ( z ) = K 0 + i = 1 n K i z z z i F(z) = K_0 + \sum^{n}_{i=1}\frac{K_i {\color{blue}z}}{{\color{blue}z-z_i}}
      * 根据收敛域, 将上式划分为 F 1 ( z ) ( z > α ) F_1(z)(\lvert z \rvert >\alpha) F 2 ( z ) ( z < β ) F_2(z)(\lvert z\rvert < \beta) 两部分,由如下已知变换对,来求原函数。
      δ ( k ) 1 ,    z a k ε ( k ) z z a ,    z > a a k ε ( k 1 ) z z a ,    z < a \begin{aligned} \displaystyle \delta(k) \longleftarrow & \longrightarrow 1,\; 整个 z 平面 \\ a^k \varepsilon(k) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert > \lvert a \rvert \\ -a^k \varepsilon(-k-1) \longleftarrow & \longrightarrow \frac{z}{z-a},\; \lvert z \rvert < \lvert a \rvert \\\end{aligned}

    2. 特例 F ( z ) F(z) 包含共轭复根 时 ( z 1 , 2 = c ± j d = α e ± j β z_{1,2} = c \pm jd = \alpha e^{\pm j\beta} ):
      F ( z ) z = K 1 z c j d + K 1 z c + j d K 1 = K 1 e j θ F ( z ) = K 1 e j θ z z α e j β + K 1 e j θ z z α e j β \begin{aligned} \frac{F(z)}{z} &= \displaystyle \frac{K_1}{z-c-jd}+\frac{K_1^*}{z-c+jd}\\ K_1 &= \lvert K_1\rvert e^{j\theta} \\ F(z) & = \displaystyle \frac{\lvert K_1\rvert e^{j\theta}z}{z-\alpha e^{j\beta}}+\frac{\lvert K_1 \rvert e^{-j\theta}z}{z-\alpha e^{-j\beta}}\\ \end{aligned}
      z > α ,    f ( k ) = 2 k 1 α k cos ( β k + θ ) ε ( k ) 若 \lvert z \rvert > \alpha, \; f(k) = 2 \lvert k_1 \rvert \alpha^k \cos(\beta k + \theta) \varepsilon(k)
      z < α ,    f ( k ) = 2 k 1 α k cos ( β k + θ ) ε ( k 1 ) 若 \lvert z \rvert < \alpha, \; f(k) = -2 \lvert k_1 \rvert \alpha^k \cos(\beta k + \theta) \varepsilon(-k-1)

    3. F ( z ) F(z) 重极点 (重根)

      • A ( z ) = 0 A(z) = 0 z = p 1 z=p_1 处有 r r 重根,
        F ( z ) = F a ( z ) + F b ( z ) = K 11 z ( z a ) r + K 12 z ( z a ) r 1 + + K 1 r z ( z a ) + F b ( z ) F(z) = F_a(z) + F_b(z) = \frac{K_{11}z}{(z-a)^r}+ \frac{K_{12}z}{(z-a)^{r-1}}+ \cdots + \frac{K_{1r}z}{(z-a)}+F_b(z)
        K 1 i = 1 ( i 1 ) ! d i 1 d z i 1 [ ( z a ) r F ( z ) z ] z = a K_{1i} = \displaystyle \frac{1}{(i-1)!} \frac{d^{i-1}}{dz^{i-1}}[{\color{red}(z - a)^r \frac{F(z)}{z}}] \Big\vert _{z=a}
      • F ( z ) F(z) 展开式中含 z ( z a ) r \displaystyle\frac{z}{(z-a)^r} 项 ( r > 1 r>1 ), 则逆变换为:
      • z > α \lvert z \rvert >\alpha , 对应原序列为因果序列:
        k ( k 1 ) ( k r + 2 ) ( r 1 ) ! a k r + 1 ε ( k ) \frac{k(k-1)\cdots (k-r+2)}{(r-1)!}a^{k-r+1} \varepsilon(k)
  • 推导记忆:
    Z [ a k ε ( k ) ] = z z a Z [ k a k 1 ε ( k ) ] = z ( z a ) 2 Z [ k ( k 1 ) a k 2 ε ( k ) ] = 2 z ( z a ) 3 Z [ 1 2 k ( k 1 ) a k 2 ε ( k ) ] = z ( z a ) 3 \begin{aligned} \mathcal{Z}\big[a^k \varepsilon(k)\big] &= \frac{z}{z-a}\\ \mathcal{Z}\big[ka^{k-1} \varepsilon(k)\big] &= \frac{z}{(z-a)^2}\\ \mathcal{Z}\big[k(k-1)a^{k-2} \varepsilon(k)\big] &= \frac{2 z}{(z-a)^3}\\ \mathcal{Z}\big[\frac{1}{2}k(k-1)a^{k-2} \varepsilon(k)\big] &= \frac{z}{(z-a)^3}\end{aligned}

8.1.7 z变换与拉普拉斯变换的关系

Z平面与S平面的映射关系

z = e s T z = e^{sT}
s = 1 T ln z s = \frac{1}{T}\ln z

  • T T 是序列的时间间隔

  • ω s = 2 π T \omega_s = \frac{2\pi}{T} 重复频率

  • 为了说明s与z的映射关系

  • s表示成直角坐标形式
    s = σ + j ω s = \sigma + j\omega

  • z 表示成极坐标形式
    z = r e j θ z = r e^{j\theta}
    z = r e j θ = e ( σ + j ω ) T = e σ T e j ω T z = r e^{j\theta} = e^{(\sigma + j\omega) T} = e^{\sigma T}e^{j\omega T}

  • 于是得到
    r = e σ T = e 2 π ω s σ r = e^{\sigma T} = e^{\frac{2\pi}{\omega_s}{\sigma}}
    θ = ω T = 2 π ω ω s \theta = \omega T = 2\pi \frac{\omega}{\omega_s}

  • 上式表明s平面与z平面有如下的映射关系:

  1. s平面上的虚轴 ( σ = 0    s = j ω \sigma=0,\;s=j\omega ) 映射到z平面是单位圆 r = 1 r=1
    其右半平面 σ > 0 \sigma>0 映射到 z 平面的单位圆外 r > 1 r>1
    而左半平面 σ < 0 \sigma<0 映射到 z 平面的单位圆内 r < 1 r<1
  2. s平面的实轴( s = σ ω = 0 s=\sigma,\omega=0 ) 映射到z平面的正实轴;
    原点( s = 0 s=0 )映射到z平面的正实轴上一点( r = 1 , θ = 0 r=1,\theta=0 ) 。
  3. 由于 e j θ e^{j\theta} 是以 ω s \omega_s 为周期的周期函数,
    因此在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期旋转,每平移 ω s \omega_s ,则沿单位圆转一圈。
    所以 s z s\sim z 映射并不是单值的。

s变换与z变换的转换公式

  • z变换的定义式是通过理想取样信号的拉普拉斯变换引出的,由此,离散序列的z变换和理想取样信号的拉普拉斯变换之间具有如下关系:
    F ( z ) z = e s T = F s ( s ) F(z)\big\vert_{z=e^{sT}} = F_s(s)

  • 表明: z变换式中令 z = e s T z = e^{sT} , 则变换式就成为相应的理想取样信号的拉普拉斯变换。

    • 如果进一步地,令拉普拉斯变换中的变量 s = j ω s=j\omega ,则
      F ( z ) z = e j ω T = F s ( j ω ) F(z) \big\vert_{z=e^{j\omega T}} = F_s(j\omega)
    • 上式变为与序列相对应的理想取样信号的傅里叶变换。
  • 讨论:若连续信号 f ( t ) f(t) 由N项指数信号相加而成(单极点):
    f ( t ) = f 1 ( t ) + f 2 ( t ) + + f N ( t ) = i = 1 N f i ( t ) = i = 1 N A i e p i t ε ( t ) f(t) = f_1(t) + f_2(t) + \cdots + f_N(t) = \sum^{N}_{i=1}f_i(t) = \sum^{N}_{i=1} A_i e^{p_i t} \varepsilon (t)

    • 容易求得,其拉普拉斯变换为:
      F ( s ) = i = 1 N A i s p i F(s) = \sum^{N}_{i=1} \frac{A_i}{s-p_i}
    • 对应的采样离散序列 f ( k ) f(k) 由 N 项指数序列相加而成
      f ( k ) = f 1 ( k ) + f 2 ( k ) + + f N ( k ) = i = 1 N f i ( k ) = i = 1 N A i e p i k T ε ( k ) f(k) = f_1(k) + f_2(k) + \cdots + f_N(k) = \sum^{N}_{i=1}f_i(k) = \sum^{N}_{i=1} A_i {\color{red}e^{p_i kT}} \varepsilon (k)
    • 它的z变换为
      F ( z ) = i = 1 N A i z z e p i T F(z) = \sum^{N}_{i=1}\frac{A_i z}{z- e^{p_i T}}
      F ( s ) = i = 1 N A i z p i F(s) = \sum^{N}_{i=1}\frac{A_i}{z- p_i}
  • 结论:如果 F ( s ) F(s) 有N个单极点 p i p_i ,则相应的z变换即为 F ( z ) F(z)

8.1.8. 差分方程的z变换解

  • 单边 z 变换将系统的初始条件自然地包含于其代数方程中,故可求系统的零输入、零状态响应和全响应。
    i = 0 n a b i y ( k i ) = j = 0 m b m j f ( k j ) \sum^{n}_{i=0} a_{b-i}y(k-i) = \sum^{m}_{j=0} b_{m-j} f(k-j)

  • f ( k ) f(k) k = 0 k=0 时接入,系统初始状态为 y ( 1 ) , y ( 2 ) , y ( n ) y(-1),y(-2),\cdots y(-n)

  • 取单边 z 变换得:
    i = 0 n a n i [ z i Y ( z ) + k = 0 i 1 y ( k i ) z k ] = j = 0 m b m j [ z j F ( z ) ] \sum^n_{i=0} a_{n-i}\big[z^{-i}Y(z) + \sum^{i-1}_{k=0}y(k-i)z^{-k}\big] = \sum^{m}_{j=0} b_{m-j}\big[z^{-j}F(z)\big]
    [ i = 0 n a n i z i Y ( z ) ] + i = 0 n a n i [ k = 0 i 1 y ( k i ) z k ] = [ j = 0 m b m j z j ] F ( z ) \big[\sum^n_{i=0} a_{n-i}z^{-i}Y(z)\big] + \sum^n_{i=0} a_{n-i}\big[\sum^{i-1}_{k=0}y(k-i)z^{-k}\big] = \big[ \sum^{m}_{j=0} b_{m-j}z^{-j}\big]F(z)
    Y ( z ) = M ( z ) A ( z ) + B ( z ) A ( z ) F ( z ) = Y z i ( z ) + Y z s ( z ) Y(z) = \frac{M(z)}{A(z)}+\frac{B(z)}{A(z)}F(z) = Y_{zi}(z) + Y_{zs}(z)

  • 系统函数:
    H ( z ) = Y z s ( z ) F ( z ) = B ( z ) A ( z ) H(z) = \frac{Y_{zs}(z)}{F(z)} = \frac{B(z)}{A(z)}
    h ( k ) H ( z ) h(k)\longleftrightarrow H(z)

  • 说明:前向差分方程的解法:

  1. 方法1:
    用左移性质:
    f ( k + m ) z m F ( z ) k = 0 m 1 f ( k ) z m k f(k+m) \leftrightarrow z^m F(z) - \sum^{m-1}_{k=0} f(k)z^{m-k}
    初始条件: y ( 0 ) , y ( 1 ) , y(0), y(1), \cdots

  2. 方法2:
    转变为后向差分方程,用右移性质求解
    初始条件: y ( 1 ) , y ( 2 ) , y(-1), y(-2), \cdots

  • 若初始条件不适用,则用递推法由相应的差分方程递推得到需要的初始条件。

To TOP 至目录

发布了26 篇原创文章 · 获赞 10 · 访问量 3674

猜你喜欢

转载自blog.csdn.net/Varalpha/article/details/105174086
今日推荐