UA MATH566 统计理论1 充分统计量例题答案2

UA MATH566 统计理论1 充分统计量例题答案2

例1.12 N ( θ , 1 ) N(\theta,1) 的最小充分统计量
计算样本的联合密度
f ( x θ ) = i = 1 n 1 2 π exp ( ( x i θ ) 2 2 ) = ( 2 π ) n / 2 exp ( 1 2 i = 1 n ( x i θ ) 2 ) = ( 2 π ) n / 2 exp ( 1 2 i = 1 n x i 2 + θ i = 1 n x i n θ 2 2 ) f(x|\theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp(-\frac{(x_i-\theta)^2}{2}) \\ = (2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n (x_i - \theta)^2) \\ = (2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2})
计算 ( X , Y ) (X,Y) 两组样本联合密度的比值
f ( x θ ) f ( y θ ) = ( 2 π ) n / 2 exp ( 1 2 i = 1 n x i 2 + θ i = 1 n x i n θ 2 2 ) ( 2 π ) n / 2 exp ( 1 2 i = 1 n x i 2 + θ i = 1 n x i n θ 2 2 ) = exp ( 1 2 i = 1 n x i 2 + θ i = 1 n x i ) exp ( 1 2 i = 1 n y i 2 + θ i = 1 n y i ) = exp ( 1 2 i = 1 n x i 2 ) exp ( 1 2 i = 1 n y i 2 ) e θ ( i = 1 n x i i = 1 n y i ) \frac{f(x|\theta)}{f(y|\theta)} = \frac{(2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2}) }{(2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2}) } \\ = \frac{\exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i) } { \exp(-\frac{1}{2} \sum_{i=1}^n y_i^2+\theta \sum_{i=1}^n y_i )} = \frac{\exp(-\frac{1}{2} \sum_{i=1}^n x_i^2) } { \exp(-\frac{1}{2} \sum_{i=1}^n y_i^2)}e^{\theta(\sum_{i=1}^n x_i-\sum_{i=1}^n y_i)}
显然要让这个比值与 θ \theta 无关,除非让 i = 1 n x i i = 1 n y i = 0 \sum_{i=1}^n x_i-\sum_{i=1}^n y_i=0 ,因此最小充分统计量是 T ( X ) = i = 1 n X i T(X)=\sum_{i=1}^n X_i

例1.13 Γ ( α , β ) \Gamma(\alpha,\beta) 的最小充分统计量
计算样本的联合概率密度
f ( x α , β ) = i = 1 n β α Γ ( α ) x i α 1 e β x i = ( β α Γ ( α ) ) n ( i = 1 n x i ) α 1 e β i = 1 n x i f(x|\alpha,\beta) = \prod_{i=1}^n \frac{\beta^{\alpha}}{\Gamma{(\alpha)}}x_i^{\alpha-1}e^{-\beta x_i} = (\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i}
计算 ( X , Y ) (X,Y) 两组样本联合密度的比值
f ( x α , β ) f ( y α , β ) = ( β α Γ ( α ) ) n ( i = 1 n x i ) α 1 e β i = 1 n x i ( β α Γ ( α ) ) n ( i = 1 n y i ) α 1 e β i = 1 n y i = ( i = 1 n x i ) α 1 e β i = 1 n x i ( i = 1 n y i ) α 1 e β i = 1 n y i = ( i = 1 n x i i = 1 n y i ) α 1 e β ( i = 1 n x i i = 1 n y i ) \frac{f(x|\alpha,\beta)}{f(y|\alpha,\beta)} = \frac{(\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i}}{(\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n y_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n y_i}} \\ = \frac{ (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i}}{ (\prod_{i=1}^n y_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n y_i}} = (\frac{\prod_{i=1}^n x_i} {\prod_{i=1}^n y_i})^{\alpha-1}e^{-\beta (\sum_{i=1}^n x_i-\sum_{i=1}^n y_i})
要让这个比率与参数 α , β \alpha,\beta 无关,除非 i = 1 n x i = i = 1 n y i \prod_{i=1}^n x_i=\prod_{i=1}^n y_i i = 1 n x i = i = 1 n y i \sum_{i=1}^n x_i=\sum_{i=1}^n y_i ,所以最小充分统计量是 ( i = 1 n X i , i = 1 n X i ) (\prod_{i=1}^n X_i,\sum_{i=1}^n X_i)

例1.14 X 1 , , X n i i d U ( θ 1 , θ 2 ) X_1,\cdots,X_n \sim_{iid} U(\theta_1,\theta_2) ,找最小充分统计量
计算样本的联合概率密度
f ( x θ 1 , θ 2 ) = i = 1 n I ( θ 1 x i θ 2 ) θ 1 θ 2 = ( θ 1 θ 2 ) n i = 1 n I ( x i θ 1 ) I ( x i θ 2 ) = ( θ 1 θ 2 ) n I ( x ( 1 ) θ 1 ) I ( x ( n ) θ 2 ) f(x|\theta_1,\theta_2) = \prod_{i=1}^n \frac{I(\theta_1 \le x_i \le \theta_2)}{\theta_1-\theta_2} \\= (\theta_1-\theta_2)^{-n} \prod_{i=1}^n I(x_i \ge \theta_1)I(x_i \le \theta_2) \\ = (\theta_1-\theta_2)^{-n} I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2)
计算 ( X , Y ) (X,Y) 两组样本联合密度的比值
f ( x θ 1 , θ 2 ) f ( y θ 1 , θ 2 ) = ( θ 1 θ 2 ) n I ( x ( 1 ) θ 1 ) I ( x ( n ) θ 2 ) ( θ 1 θ 2 ) n I ( y ( 1 ) θ 1 ) I ( y ( n ) θ 2 ) = I ( x ( 1 ) θ 1 ) I ( x ( n ) θ 2 ) I ( y ( 1 ) θ 1 ) I ( y ( n ) θ 2 ) \frac{f(x|\theta_1,\theta_2)}{f(y|\theta_1,\theta_2)} = \frac{(\theta_1-\theta_2)^{-n} I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2)}{(\theta_1-\theta_2)^{-n} I(y_{(1)} \ge \theta_1)I(y_{(n)} \le \theta_2)} = \frac{I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2)}{I(y_{(1)} \ge \theta_1)I(y_{(n)} \le \theta_2)}
如果 x ( 1 ) = y ( 1 ) , x ( n ) = y ( n ) x_{(1)}=y_{(1)},x_{(n)}=y_{(n)} ,分子分母的值就会完全相同,这个比率就与参数无关,因此最小充分统计量是 ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)})

例1.15 X 1 , , X n i i d f ( x θ ) = e ( x θ ) ( 1 + e ( x θ ) ) 2 X_1,\cdots,X_n \sim_{iid} f(x|\theta)=\frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2} ,找最小充分统计量
计算样本的联合概率密度
f ( x θ ) = i = 1 n e ( x i θ ) ( 1 + e ( x i θ ) ) 2 = e i = 1 n x i + n θ [ i = 1 n ( 1 + e ( x i θ ) ) ] 2 f(x|\theta) = \prod_{i=1}^n \frac{e^{-(x_i-\theta)}}{(1+e^{-(x_i-\theta)})^2} = \frac{e^{-\sum_{i=1}^n x_i +n\theta}}{ [\prod_{i=1}^n (1+e^{-(x_i-\theta)})]^2 }
计算 ( X , Y ) (X,Y) 两组样本联合密度的比值
f ( x θ ) f ( y θ ) = e i = 1 n x i + n θ e i = 1 n y i + n θ [ i = 1 n ( 1 + e ( y i θ ) ) i = 1 n ( 1 + e ( x i θ ) ) ] 2 \frac{f(x|\theta)}{f(y|\theta)} = \frac{e^{-\sum_{i=1}^n x_i +n\theta}}{e^{-\sum_{i=1}^n y_i +n\theta}} [\frac{\prod_{i=1}^n (1+e^{-(y_i-\theta)})}{\prod_{i=1}^n (1+e^{-(x_i-\theta)})}]^2
第一个因子显然与参数 θ \theta 无关,第二个因子只要平方内的式子与参数无关,这个比值就会与参数无关。然而要做的这点,除非 k \exists k 是常数,满足
1 + e ( y i θ ) = ( 1 + e ( x i θ ) ) k 1+e^{-(y_i-\theta)} = (1+e^{-(x_i-\theta)})k
这个关系貌似看不出统计量来,但事实上这个函数是单调的,因此满足这个关系的一定是次序统计量,所以这个分布的最小充分统计量是 ( X ( 1 ) , X ( 2 ) , , X ( n ) ) (X_{(1)},X_{(2)},\cdots,X_{(n)})

例1.16 X 1 , , X n i i d U ( 0 , θ ) X_1,\cdots,X_n \sim_{iid} U(0,\theta) ,验证 T ( X ) = X ( n ) T(X)=X_{(n)} 是完备统计量。
例1.2已经计算过 T ( X ) T(X) 的密度了
f ( t ) = n t n 1 θ n I ( 0 t θ ) f(t) = nt^{n-1} \theta^{-n}I(0 \le t \le \theta)
对任一可测函数 h ( T ( X ) ) h(T(X))
E [ h ( T ( X ) ) ] = h ( t ) n t n 1 θ n I ( 0 t θ ) d t = 0 0 θ h ( t ) t n 1 d t = 0 θ 0 θ h ( t ) t n 1 d t h ( θ ) θ n 1 = 0 h ( θ ) = 0 E[h(T(X))] = \int h(t) nt^{n-1} \theta^{-n}I(0 \le t \le \theta) dt = 0 \\ \Leftrightarrow \int_0^{\theta} h(t) t^{n-1} dt = 0 \Rightarrow \frac{\partial}{\partial \theta} \int_0^{\theta} h(t) t^{n-1} dt \\ \Rightarrow h(\theta) \theta^{n-1}=0 \Rightarrow h(\theta) = 0
因此 T ( X ) = X ( n ) T(X)=X_{(n)} 是完备统计量。

例1.17 X 1 , , X n i i d N ( 0 , σ 2 ) X_1,\cdots,X_n \sim_{iid} N(0,\sigma^2) ,验证 T ( X ) = X 2 T(X)=X^2 是完备统计量。
因为 T ( X ) / σ 2 χ 2 ( 1 ) T(X)/\sigma^2 \sim \chi^2(1) ,所以它的概率密度为
f ( t ) = σ 2 2 π t 1 / 2 e t / 2 f(t) = \frac{\sigma^2}{2\sqrt{\pi}} t^{-1/2}e^{-t/2}
对任一可测函数 h ( T ( X ) ) h(T(X))
E [ h ( T ( X ) ) ] = h ( t ) σ 2 2 π t 1 / 2 e t / 2 d t = 0 h ( t ) t 1 / 2 e t / 2 d t = 0 E[h(T(X))] = \int h(t) \frac{\sigma^2}{2\sqrt{\pi}} t^{-1/2}e^{-t/2} dt = 0 \\ \Leftrightarrow \int h(t) t^{-1/2}e^{-t/2} dt = 0
上式是函数 h ( t ) / t h(t)/\sqrt{t} 的Laplace变换在1/2处的取值,因为Laplace是具有唯一性的积分变换(或者根据Laplace变换的反演公式),所以 h ( t ) / t = 0 h(t)/\sqrt{t}=0 。因此 T ( X ) = X 2 T(X)=X^2 是完备统计量。

猜你喜欢

转载自blog.csdn.net/weixin_44207974/article/details/106326174