K-均值聚类(K-Means)算法

在数据挖掘中,聚类是一个很重要的概念。传统的聚类分析计算方法主要有如下几种:划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法等。其中K-Means算法是划分方法中的一个经典的算法。

一、K-均值聚类(K-Means)概述

1、聚类:

“类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。聚类分析就是以相似性为基础,在一个聚类中的模式之间比不在同一个聚类中的模式之间具有更多的相似性。对数据集进行聚类划分,属于无监督学习。

2、K-Means:

K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类平反和最小,即最小化:
公式.jpg
结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使算法收敛,在迭代的过程中,应使得最终的聚类中心尽可能的不变。

3、K-Means算法流程:

-随机选取K个样本作为聚类中心;
-计算各样本与各个聚类中心的距离;
-将各样本回归于与之距离最近的聚类中心;
-求各个类的样本的均值,作为新的聚类中心;
-判定:若类中心不再发生变动或者达到迭代次数,算法结束,否则回到第二步。
聚类演示-1.png

4、K-Means演示举例

1.将a~d四个点聚为两类:
选定样本a和b为初始聚类中心,中心值分别为1、2
聚类演示-2.png

2.将平面上的100个点进行聚类,要求聚为两类,其横坐标都为0~99。
Python代码演示:

import numpy as np

"""
    任务要求:对平面上的 100 个点进行聚类,要求聚类为两类,其横坐标都为 0 到 99。
"""
x = np.linspace(0, 99, 100)
y = np.linspace(0, 99, 100)
k = 2
n = len(x)
dis = np.zeros([n, k+1])

# 1.选择初始聚类中心
center1 = np.array([x[0], y[0]])
center2 = np.array([x[1], y[1]])
iter_ = 100

while iter_ > 0:
    # 2.求各个点到两个聚类中心距离
    for i in range(n):
        dis[i, 0] = np.sqrt((x[i] - center1[0])**2 + (y[i] - center1[1])**2)
        dis[i, 1] = np.sqrt((x[i] - center2[0])**2 + (y[i] - center2[1])**2)
        # 3.归类
        dis[i, 2] = np.argmin(dis[i,:2])  # 将值较小的下标值赋值给dis[i, 2]

    # 4.求新的聚类中心
    index1 = dis[:, 2] == 0
    index2 = dis[:, 2] == 1
    center1_new = np.array([x[index1].mean(), y[index1].mean()])
    center2_new = np.array([x[index2].mean(), y[index2].mean()])

    # 5.判定聚类中心是否发生变换
    if all((center1 == center1_new) & (center2 == center2_new)):
       # 如果没发生变换则退出循环,表示已得到最终的聚类中心
       break

    center1 = center1_new
    center2 = center2_new

# 6.输出结果以验证
print(dis)

结果如下:
其中第 3 项代表聚类:

[[ 34.64823228 105.3589104    0.        ]
 [ 33.23401872 103.94469683   0.        ]
 [ 31.81980515 102.53048327   0.        ]
 [ 30.40559159 101.11626971   0.        ]
 [ 28.99137803  99.70205615   0.        ]
 [ 27.57716447  98.28784258   0.        ]
 [ 26.1629509   96.87362902   0.        ]
 [ 24.74873734  95.45941546   0.        ]
 [ 23.33452378  94.0452019    0.        ]
 [ 21.92031022  92.63098834   0.        ]
 [ 20.50609665  91.21677477   0.        ]
 [ 19.09188309  89.80256121   0.        ]
 [ 17.67766953  88.38834765   0.        ]
 [ 16.26345597  86.97413409   0.        ]
 [ 14.8492424   85.55992052   0.        ]
 [ 13.43502884  84.14570696   0.        ]
 [ 12.02081528  82.7314934    0.        ]
 [ 10.60660172  81.31727984   0.        ]
 [  9.19238816  79.90306627   0.        ]
 [  7.77817459  78.48885271   0.        ]
 [  6.36396103  77.07463915   0.        ]
 [  4.94974747  75.66042559   0.        ]
 [  3.53553391  74.24621202   0.        ]
 [  2.12132034  72.83199846   0.        ]
 [  0.70710678  71.4177849    0.        ]
 [  0.70710678  70.00357134   0.        ]
 [  2.12132034  68.58935778   0.        ]
 [  3.53553391  67.17514421   0.        ]
 [  4.94974747  65.76093065   0.        ]
 [  6.36396103  64.34671709   0.        ]
 [  7.77817459  62.93250353   0.        ]
 [  9.19238816  61.51828996   0.        ]
 [ 10.60660172  60.1040764    0.        ]
 [ 12.02081528  58.68986284   0.        ]
 [ 13.43502884  57.27564928   0.        ]
 [ 14.8492424   55.86143571   0.        ]
 [ 16.26345597  54.44722215   0.        ]
 [ 17.67766953  53.03300859   0.        ]
 [ 19.09188309  51.61879503   0.        ]
 [ 20.50609665  50.20458146   0.        ]
 [ 21.92031022  48.7903679    0.        ]
 [ 23.33452378  47.37615434   0.        ]
 [ 24.74873734  45.96194078   0.        ]
 [ 26.1629509   44.54772721   0.        ]
 [ 27.57716447  43.13351365   0.        ]
 [ 28.99137803  41.71930009   0.        ]
 [ 30.40559159  40.30508653   0.        ]
 [ 31.81980515  38.89087297   0.        ]
 [ 33.23401872  37.4766594    0.        ]
 [ 34.64823228  36.06244584   0.        ]
 [ 36.06244584  34.64823228   1.        ]
 [ 37.4766594   33.23401872   1.        ]
 [ 38.89087297  31.81980515   1.        ]
 [ 40.30508653  30.40559159   1.        ]
 [ 41.71930009  28.99137803   1.        ]
 [ 43.13351365  27.57716447   1.        ]
 [ 44.54772721  26.1629509    1.        ]
 [ 45.96194078  24.74873734   1.        ]
 [ 47.37615434  23.33452378   1.        ]
 [ 48.7903679   21.92031022   1.        ]
 [ 50.20458146  20.50609665   1.        ]
 [ 51.61879503  19.09188309   1.        ]
 [ 53.03300859  17.67766953   1.        ]
 [ 54.44722215  16.26345597   1.        ]
 [ 55.86143571  14.8492424    1.        ]
 [ 57.27564928  13.43502884   1.        ]
 [ 58.68986284  12.02081528   1.        ]
 [ 60.1040764   10.60660172   1.        ]
 [ 61.51828996   9.19238816   1.        ]
 [ 62.93250353   7.77817459   1.        ]
 [ 64.34671709   6.36396103   1.        ]
 [ 65.76093065   4.94974747   1.        ]
 [ 67.17514421   3.53553391   1.        ]
 [ 68.58935778   2.12132034   1.        ]
 [ 70.00357134   0.70710678   1.        ]
 [ 71.4177849    0.70710678   1.        ]
 [ 72.83199846   2.12132034   1.        ]
 [ 74.24621202   3.53553391   1.        ]
 [ 75.66042559   4.94974747   1.        ]
 [ 77.07463915   6.36396103   1.        ]
 [ 78.48885271   7.77817459   1.        ]
 [ 79.90306627   9.19238816   1.        ]
 [ 81.31727984  10.60660172   1.        ]
 [ 82.7314934   12.02081528   1.        ]
 [ 84.14570696  13.43502884   1.        ]
 [ 85.55992052  14.8492424    1.        ]
 [ 86.97413409  16.26345597   1.        ]
 [ 88.38834765  17.67766953   1.        ]
 [ 89.80256121  19.09188309   1.        ]
 [ 91.21677477  20.50609665   1.        ]
 [ 92.63098834  21.92031022   1.        ]
 [ 94.0452019   23.33452378   1.        ]
 [ 95.45941546  24.74873734   1.        ]
 [ 96.87362902  26.1629509    1.        ]
 [ 98.28784258  27.57716447   1.        ]
 [ 99.70205615  28.99137803   1.        ]
 [101.11626971  30.40559159   1.        ]
 [102.53048327  31.81980515   1.        ]
 [103.94469683  33.23401872   1.        ]
 [105.3589104   34.64823228   1.        ]]

Process finished with exit code 0

以上代码结果中每个值的第一项和第二项分别代表到第一个聚类中心和第二个聚类中心的距离。

猜你喜欢

转载自blog.csdn.net/Allen_Adolph/article/details/106498299