PyTorch官方迁移学习代码学习

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

在本教程中学习如何使用迁移学习训练用于图像分类的CNN网络。

实际上,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大的数据集的情况相对较少。相反,通常在非常大的数据集(例如 ImageNet,包含 1000 个类别的 120 万张图像)上预训练 ConvNet,然后使用 ConvNet 作为初始化或固定特征提取器来完成自己的任务。

通常来说有两种主要的迁移学习场景:

  • 微调 convnet:即finetune convnet,使用预训练网络初始化网络,而不是随机初始化,就像使用在 imagenet 1000 数据集上训练的网络一样。其余的训练看起来像往常一样。

  • ConvNet 作为固定特征提取器:冻结除最终全连接层之外的所有网络的权重。最后一个完全连接的层被替换为一个具有随机权重的新层,并且只训练这一层。【只有这层的参数会在反向传播时更新】

一、首先导入相关的包

# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

cudnn.benchmark = True
plt.ion()   # interactive mode

二、加载数据

使用 torchvision 和 torch.utils.data 包来加载数据,今天要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。有大约 120 张针对蚂蚁和蜜蜂的训练图像。每个类别有 75 个验证图像。通常,如果从头开始训练,对于泛化来说这是一个非常小的数据集(即很难泛化)。由于我们使用的是迁移学习,因此应该能够很好地进行泛化。This dataset is a very small subset of imagenet。

Download the data from here and extract it to the current directory.
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
我print了image_datasets,可以看到image_datasets是个结构体,包含训练数据和测试数据的样本数、路径、transform操作。
{'train': Dataset ImageFolder
Number of datapoints: 244
Root location: data/hymenoptera_data\train
StandardTransform
Transform: Compose(
RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear), antialias=None)
RandomHorizontalFlip(p=0.5)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
), 'val': Dataset ImageFolder
Number of datapoints: 153
Root location: data/hymenoptera_data\val
StandardTransform
Transform: Compose(
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)}
print dataloaders:
{'train': <torch.utils.data.dataloader.DataLoader object at 0x000001940A9E99D0>, 'val': <torch.utils.data.dataloader.DataLoader object at 0x000001940A9E99A0>}

三、可视化数据

def imshow(inp, title=None): # 输出为inp
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data 得到一个batch=4的train数据
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

四、训练模型

Now, let’s write a general function to train a model. Here, we will illustrate:

  • Scheduling the learning rate(学习率)

  • Saving the best model(保存最佳模型)

In the following, parameter scheduler is an LR scheduler object from torch.optim.lr_scheduler

即描述训练过程的函数。

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(f'Epoch {epoch}/{num_epochs - 1}')
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
    print(f'Best val Acc: {best_acc:4f}')

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

五、可视化模型预测结果

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title(f'predicted: {class_names[preds[j]]}')
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

六、Finetuning预训练网络

Load a pretrained model and reset final fully connected layer.微调ConvNet,加载预训练模型并重置最终全连接层,并进行训练,主要关注第五行model_ft.fc = nn.Linear(num_ftrs, 2)为将多分类网络改为二分类网络:

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

七、Train and evaluate

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
Epoch 22/24
----------
train Loss: 0.3835 Acc: 0.8320
val Loss: 0.2321 Acc: 0.8954
Epoch 23/24
----------
train Loss: 0.3731 Acc: 0.8320
val Loss: 0.2228 Acc: 0.8954
Epoch 24/24
----------
train Loss: 0.3357 Acc: 0.8689
val Loss: 0.2345 Acc: 0.9020
Training complete in 1m 26s
Best val Acc: 0.928105
visualize_model(model_ft)

ConvNet as fixed feature extractor

再将ConvNet作为固定特征提取器,在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad=Falsebackward()来冻结参数,这样反向传播backward()的时候它们的梯度就不会被计算。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

猜你喜欢

转载自blog.csdn.net/weixin_44855366/article/details/129416958