放缩法

已知数列 { a n } \{a_n\} 满足 a 1 = 1 , a n + 1 = 3 a n + 1. a_1=1,a_{n+1}=3a_n+1.
(1)证明: { a n + 1 2 } \{a_n+\dfrac{1}{2}\} 是等比数列,并求 { a n } \{a_n\} 的通项公式;
(2)证明: 1 a 1 + 1 a 2 + + 1 a n < 3 2 . \dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_n}<\dfrac{3}{2}.

[解析]
(1)由题意有 a n + 1 + 1 2 = 3 ( a n + 1 2 ) a_{n+1}+\dfrac{1}{2}=3(a_n+\dfrac{1}{2}) 所以 { a n + 1 2 } \{a_n+\dfrac{1}{2}\} 是以 3 2 \dfrac{3}{2} 为首项, 3 3 为公比的等比数列;解得 a n = 3 n 1 2 . a_n=\dfrac{3^n-1}{2}.

(2)因为当 n > 1 n>1 2 3 n 1 < 1 3 n 1 \dfrac{2}{3^n-1}<\dfrac{1}{3^{n-1}}
1 a 1 + 1 a 2 + + 1 a n \dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_n}\quad\quad\quad\quad = 2 3 1 + 2 3 2 1 + + 2 3 n 1 =\dfrac{2}{3-1}+\dfrac{2}{3^2-1}+\cdots+\dfrac{2}{3^n-1} < 1 + 1 3 + 1 3 2 + + 1 3 n 1 <1+\dfrac{1}{3}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{3^{n-1}}\quad\quad\quad = 3 2 1 2 3 n 1 < 3 2 =\dfrac{3}{2}-\dfrac{1}{2\cdot3^{n-1}}<\dfrac{3}{2}\quad\quad\quad\quad\quad\quad n = 1 n=1 时,显然成立;得证.

猜你喜欢

转载自blog.csdn.net/LB_yifeng/article/details/83902493
今日推荐