【ROS Tutorials入门之一】基本语法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangbaodong070411209/article/details/87161900

参考ROS教程:http://wiki.ros.org/ROS/Tutorials,通过下面例子,学习如何创建节点和通过topic通信。

创建ROS功能包

在建立的工作空间创建新的功能包:
$ cd ~/dev/catkin_ws/src
$ catkin_create_pkg [package_name] [depend1] [depend2] [depend3]
依赖项包括:

  • std_msgs
  • roscpp
  • rospy

编译功能包

$ cd ~/dev/catkin_ws
$ catkin_make
如果上述步骤能正确执行,结果如下图所示:
吧

创建节点

Writing the Publisher Node

“Node” is the ROS term for an executable that is connected to the ROS network. Here we’ll create a publisher (“talker”) node which will continually broadcast a message.
代码如下:

/*
 * Copyright (C) 2008, Morgan Quigley and Willow Garage, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the names of Stanford University or Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived from
 *     this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
// %Tag(FULLTEXT)%
// %Tag(ROS_HEADER)%
#include "ros/ros.h"
// %EndTag(ROS_HEADER)%
// %Tag(MSG_HEADER)%
#include "std_msgs/String.h"
// %EndTag(MSG_HEADER)%

#include <sstream>

/**
 * This tutorial demonstrates simple sending of messages over the ROS system.
 */
int main(int argc, char **argv)
{
  /**
   * The ros::init() function needs to see argc and argv so that it can perform
   * any ROS arguments and name remapping that were provided at the command line.
   * For programmatic remappings you can use a different version of init() which takes
   * remappings directly, but for most command-line programs, passing argc and argv is
   * the easiest way to do it.  The third argument to init() is the name of the node.
   *
   * You must call one of the versions of ros::init() before using any other
   * part of the ROS system.
   */
// %Tag(INIT)%
  ros::init(argc, argv, "talker");
// %EndTag(INIT)%

  /**
   * NodeHandle is the main access point to communications with the ROS system.
   * The first NodeHandle constructed will fully initialize this node, and the last
   * NodeHandle destructed will close down the node.
   */
// %Tag(NODEHANDLE)%
  ros::NodeHandle n;
// %EndTag(NODEHANDLE)%

  /**
   * The advertise() function is how you tell ROS that you want to
   * publish on a given topic name. This invokes a call to the ROS
   * master node, which keeps a registry of who is publishing and who
   * is subscribing. After this advertise() call is made, the master
   * node will notify anyone who is trying to subscribe to this topic name,
   * and they will in turn negotiate a peer-to-peer connection with this
   * node.  advertise() returns a Publisher object which allows you to
   * publish messages on that topic through a call to publish().  Once
   * all copies of the returned Publisher object are destroyed, the topic
   * will be automatically unadvertised.
   *
   * The second parameter to advertise() is the size of the message queue
   * used for publishing messages.  If messages are published more quickly
   * than we can send them, the number here specifies how many messages to
   * buffer up before throwing some away.
   */
// %Tag(PUBLISHER)%
  ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
// %EndTag(PUBLISHER)%

// %Tag(LOOP_RATE)%
  ros::Rate loop_rate(10);
// %EndTag(LOOP_RATE)%

  /**
   * A count of how many messages we have sent. This is used to create
   * a unique string for each message.
   */
// %Tag(ROS_OK)%
  int count = 0;
  while (ros::ok())
  {
// %EndTag(ROS_OK)%
    /**
     * This is a message object. You stuff it with data, and then publish it.
     */
// %Tag(FILL_MESSAGE)%
    std_msgs::String msg;

    std::stringstream ss;
    ss << "hello world " << count;
    msg.data = ss.str();
// %EndTag(FILL_MESSAGE)%

// %Tag(ROSCONSOLE)%
    ROS_INFO("%s", msg.data.c_str());
// %EndTag(ROSCONSOLE)%

    /**
     * The publish() function is how you send messages. The parameter
     * is the message object. The type of this object must agree with the type
     * given as a template parameter to the advertise<>() call, as was done
     * in the constructor above.
     */
// %Tag(PUBLISH)%
    chatter_pub.publish(msg);
// %EndTag(PUBLISH)%

// %Tag(SPINONCE)%
    ros::spinOnce();
// %EndTag(SPINONCE)%

// %Tag(RATE_SLEEP)%
    loop_rate.sleep();
// %EndTag(RATE_SLEEP)%
    ++count;
  }


  return 0;
}
// %EndTag(FULLTEXT)%

代码详解:
关键是设置节点进程的句柄:
ros::Publisher chatter_pub = n.advertise<std_msgs::String>(“chatter”, 1000);
将节点设置成发布者,并将所发布主题和类型的名称告知节点管理器。

Writing the Subscriber Node

代码如下:

/*
 * Copyright (C) 2008, Morgan Quigley and Willow Garage, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the names of Stanford University or Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived from
 *     this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

// %Tag(FULLTEXT)%
#include "ros/ros.h"
#include "std_msgs/String.h"

/**
 * This tutorial demonstrates simple receipt of messages over the ROS system.
 */
// %Tag(CALLBACK)%
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}
// %EndTag(CALLBACK)%

int main(int argc, char **argv)
{
  /**
   * The ros::init() function needs to see argc and argv so that it can perform
   * any ROS arguments and name remapping that were provided at the command line.
   * For programmatic remappings you can use a different version of init() which takes
   * remappings directly, but for most command-line programs, passing argc and argv is
   * the easiest way to do it.  The third argument to init() is the name of the node.
   *
   * You must call one of the versions of ros::init() before using any other
   * part of the ROS system.
   */
  ros::init(argc, argv, "listener");

  /**
   * NodeHandle is the main access point to communications with the ROS system.
   * The first NodeHandle constructed will fully initialize this node, and the last
   * NodeHandle destructed will close down the node.
   */
  ros::NodeHandle n;

  /**
   * The subscribe() call is how you tell ROS that you want to receive messages
   * on a given topic.  This invokes a call to the ROS
   * master node, which keeps a registry of who is publishing and who
   * is subscribing.  Messages are passed to a callback function, here
   * called chatterCallback.  subscribe() returns a Subscriber object that you
   * must hold on to until you want to unsubscribe.  When all copies of the Subscriber
   * object go out of scope, this callback will automatically be unsubscribed from
   * this topic.
   *
   * The second parameter to the subscribe() function is the size of the message
   * queue.  If messages are arriving faster than they are being processed, this
   * is the number of messages that will be buffered up before beginning to throw
   * away the oldest ones.
   */
// %Tag(SUBSCRIBER)%
  ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
// %EndTag(SUBSCRIBER)%

  /**
   * ros::spin() will enter a loop, pumping callbacks.  With this version, all
   * callbacks will be called from within this thread (the main one).  ros::spin()
   * will exit when Ctrl-C is pressed, or the node is shutdown by the master.
   */
// %Tag(SPIN)%
  ros::spin();
// %EndTag(SPIN)%

  return 0;
}
// %EndTag(FULLTEXT)%

代码详解:
创建一个订阅者,并从主题获取message为名称的消息数据,处理消息的回调函数为messageCallback:
ros::Subscriber sub = n.subscribe(“chatter”, 1000, chatterCallback);

Now that you have written a simple publisher and subscriber, let’s examine the simple publisher and subscriber.

编译节点

编译之前,我们需要修改一个CMakeLists.txt和package.xml文件。然后,运行:
$ catkin_make [package_name]
接下来执行如下操作:(注意在不同的终端)
$ roscore
$ rosrun chapter2_tutorials chap2_example1_a
$ rosrun chapter2_tutorials chap2_example1_b

如果tab无法补全,试着先执行这条指令:
($ source ~/dev/catkin_ws/devel/setup.bash)
在这里插入图片描述
也可以使用rosnode和rostopic命令来查看当前节点的运行状态,尝试使用以下命令:
$ rosnode list
$ rostopic list
$ rqt_graph
在这里插入图片描述
上面的操作已经完成了节点之间通信,后续还有更多有趣的操作,今天要讲的就这么多。

最后,通过今天的操作我们也慢慢理解了ROS作为一个机器人的操作系统,其主要思想:
ROS的核心是一个分布式、低耦合的通讯机制。

猜你喜欢

转载自blog.csdn.net/wangbaodong070411209/article/details/87161900