矩阵分析 (八) 矩阵的直积

我的微信公众号名称:AI研究订阅号
微信公众号ID:MultiAgent1024
公众号介绍:主要研究强化学习、计算机视觉、深度学习、机器学习等相关内容,分享学习过程中的学习笔记和心得!期待您的关注,欢迎一起学习交流进步!

  矩阵的直积(Kronecher 积)是一种重要的矩阵乘积,它在矩阵理论研究中起着重要的作用,是一种基本的数学工具。本文介绍矩阵直积的基本性质,并利用矩阵的直积求解线性矩阵方程组矩阵微分方程组

直积的定义和性质

  • 定义8.1:设矩阵:

A = ( a i j ) m × n B = ( b i j ) p × q A=(a_{ij})_{m \times n},B=(b_{ij})_{p \times q}

  称如下的分块矩阵:

A B = ( a 11 B a 12 B a 1 n B a m 1 B a m 2 B a m n B ) A \otimes B =\left(\begin{array}{cccc} {a_{11} B} & {a_{12} B} & {\cdots} & {a_{1 n} B} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {a_{m 1} B} & {a_{m 2} B} & {\cdots} & {a_{m n} B} \end{array}\right)

  为 A A B B 的直积或者Kronecher积。

  可见 A B A \otimes B m p × n q mp \times nq 矩阵。

矩阵的直积有下列性质

  • 1、设 K K 为常数,则:
    k ( A B ) = ( k A ) B = A ( k B ) k(A\otimes B) = (kA) \otimes B=A \otimes (kB)

  • 2、设 A 1 A 2 A_{1},A_{2} 同阶矩阵,则:
    ( A 1 + A 2 ) B = A 1 B + A 2 B (A_{1}+A_{2}) \otimes B = A_{1} \otimes B+A_{2} \otimes B
    B ( A 1 + A 2 ) = B A 1 + B A 2 B \otimes (A_{1}+A_{2}) = B \otimes A_{1}+B \otimes A_{2}

  • 3、:
    ( A B ) T = A T B T (A \otimes B)^{T}=A^{T} \otimes B^{T}

  • 4、:
    ( A B ) C = A ( B C ) (A \otimes B) \otimes C = A \otimes (B \otimes C)

  • 5、设: A = ( a i j ) m × n A=(a_{ij})_{m \times n} B = ( b i j ) p × q B=(b_{ij})_{p\times q} C = ( c i j ) n × s C=(c_{ij})_{n \times s} D = ( d i j ) q × t D=(d_{ij})_{q \times t} ,则:
    ( A B ) ( C D ) = ( A C ) ( B D ) (A \otimes B)(C \otimes D) = (AC) \otimes (BD)

  • 6、设:
    A C n × n B C n × n A \in C^{n \times n},B \in C^{n\times n}

  都可逆,则 A B A \otimes B 可逆,且:

( A B ) 1 = A 1 B 1 (A \otimes B)^{-1} = A^{-1} \otimes B^{-1}

  • 7、设 A C n × n A \in C^{n \times n} ,设 B C n × n B \in C^{n \times n} 都是酉矩阵,则 A × B A \times B 也是酉矩阵

  • 8、设 A C m × m A \in C^{m \times m} 的全体特征值 λ 1 \lambda_{1} λ 2 \lambda_{2} \cdots λ m \lambda_{m} B C n × n B \in C^{n \times n} 的全体特征值 μ 1 \mu_{1} μ 2 \mu_{2} \cdots μ n \mu_{n} ,则 A B A \otimes B 全体特征值是:
    λ i μ i \lambda_{i}\mu_{i}

  • 9、设 A C m × m A \in C^{m \times m} B C n × n B \in C^{n \times n} ,则 A B = A n B m |A \otimes B| = |A|^{n} ·|B|^{m}

  • 10、设 A C m × m A \in C^{m \times m} 的特征值是 λ 1 \lambda_{1} λ 2 \lambda_{2} \cdots λ m \lambda_{m} B C n × n B \in C^{n \times n} 的特征值是 μ 1 \mu_{1} μ 2 \mu_{2} \cdots μ n \mu_{n} 则:
    A E n + E m B A \otimes E_{n} + E_{m} \otimes B

  的特征值是:

λ i + μ j \lambda_{i} + \mu_{j}

  • 11、设 A C m × m A \in C^{m \times m} 的特征值是 λ 1 \lambda_{1} λ 2 \lambda_{2} \cdots λ m \lambda_{m} B C n × n B \in C^{n \times n} 的特征值是 μ 1 \mu_{1} μ 2 \mu_{2} \cdots μ n \mu_{n} ,则 A E n + E m B T A \otimes E_{n} + E_{m} \otimes B^{T} 的特征值也是 λ i \lambda_{i} + μ j \mu_{j}

  • x x A C m × m A\in C^{m \times m} 特征向量 y y B C n × n B \in C^{n \times n} 特征向量,则 x y x \otimes y A B A \otimes B 特征向量

  • A C n × n A \in C^{n \times n} ,则:

e E A = E e A e A E = e A E e^{E \otimes A} = E \otimes e^{A},e^{A \otimes E} = e^{A} \otimes E

  • A C m × m A \in C^{m \times m} B C n × n B \in C^{n \times n} 则:
    e A E n + E m B = e A e B e^{A \otimes E_{n} + E_{m} \otimes B} = e^{A} \otimes e^{B}

直积的应用

  本节讨论直积在解线性矩阵方程组中的应用。

拉直

  • 定义8.2:设矩阵 A = ( a i j ) m × n A=(a_{ij})_{m \times n} ,称 m n mn 维列向量:

A = ( a 11 a 1 n a 21 a 2 n a m 1 a m n ) T \underset{A}{\rightarrow} = (a_{11} \cdots a_{1n},a_{21} \cdots a_{2n},\cdots ,a_{m1} \cdots a_{m n})^{T}

  为 A A 的拉直。

拉直具有下面的性质:

  1. A B C m × n A,B \in C^{m \times n} k k l l 为常数,则:

k A + l B = k A + l B \overrightarrow{k A+l B}=k \overrightarrow{ A}+ l \overrightarrow{ B}

  1. A = ( a i j ( t ) ) m × n A=(a_{ij}(t))_{m \times n} 则:

d A d t = d A d t \frac{\overrightarrow{dA}}{dt}=\frac{d \overrightarrow{A}}{dt}

  • 定理8.1 设:

A C m × n B C p × q X C n × p A \in C^{m \times n},B \in C^{p \times q},X \in C^{n \times p}

  则:

A X B = ( A E n ) ( E m B T ) X \overrightarrow{AXB} = (A \otimes E_{n})(E_{m} \otimes B^{T}) \overrightarrow{X}

= ( A B T ) X = (A \otimes B^{T}) \overrightarrow{X}

A X + B X = ( A E n + E m B T ) X \overrightarrow{AX+BX} = (A \otimes E_{n} + E_{m} \otimes B^{T}) \overrightarrow{X}

线性矩阵方程组

  • 下面讨论几种类型方程组的解:设

A C m × m B C n × n F C m × n A \in C^{m \times m},B \in C^{n \times n},F \in C^{m \times n}

  解Lyapunov矩阵方程:

  解 将矩阵两边拉直:

( A E n + E n B T ) X = F (A \otimes E_{n}+E_{n} \otimes B^{T}) \overrightarrow{X} = \overrightarrow{F}

  因为矩阵方程与所得的线性方程组等价,得到矩阵方程组有解充要条件是:

r ( A E n + E m B T F ) r(A \otimes E_{n} + E_{m }\otimes B^{T},F)

= r ( A E n + E m B T ) = r(A \otimes E_{n} + E_{m }\otimes B^{T})

  有唯一解充要条件是:

A E n + E m B T 0 |A \otimes E_{n} + E_{m} \otimes B^{T}| \neq 0

  • A F C n × n A,F \in C^{n \times n} ,且 A A 的特征值都是实数,证明矩阵方程:

X + A X A + A 2 X A 2 = F X + AXA + A^{2}XA^{2} =F

  有唯一解

  • 例10

A C m × m B C n × n X ( t ) C m × n A \in C^{m \times m},B \in C^{n \times n},X(t) \in C^{m \times n}

  求解矩阵微分方程组的初值问题:

{ d X d t = A X + X B X ( 0 ) = X 0 \left\{\begin{array}{l} {\frac{d X}{d t}=A X+X B} \\ {X(0)=X_{0}} \end{array}\right.

   将矩阵两边拉直:

{ d X d t = ( A E n + E n B T ) X X ( 0 ) = X 0 \left\{\begin{array}{l} {\frac{\overrightarrow{dX}}{\mathrm{d} t}=\left(A \otimes E_{n}+E_{n} \otimes B^{\mathrm{T}}\right) \vec{X}} \\ {\vec{X}(0)=\vec{X}_{0}} \end{array}\right.

  这是常系数齐次线性微分方程组,它的解:

X ( t ) = e A E n + E m B T t X 0 \overrightarrow{X}(t) = e^{A \otimes E_{n} + E_{m} \otimes B^{T} t} \overrightarrow{X_{0}}

= ( e A t e B T t ) X 0 = (e^{At} \otimes e^{B^{T}t}) \overrightarrow{X_{0}}

  再由:

A X B = ( A B T ) X \overrightarrow{AXB} = (A \otimes B^{T})\overrightarrow{X}

( e A t e B T t ) X 0 = e A t X 0 e B t (e^{At} \otimes e^{B^{T}t}) \overrightarrow{X_{0}}=\overrightarrow{e^{At}X_{0}e^{Bt}}

  所以:

X ( t ) = e A t X 0 e B t \overrightarrow{X}(t) = \overrightarrow{e^{At}X_{0}e^{Bt}}

X ( t ) = e A t X 0 e B t X(t) =e^{At}X_{0}e^{Bt}

发布了141 篇原创文章 · 获赞 114 · 访问量 16万+

猜你喜欢

转载自blog.csdn.net/weixin_39059031/article/details/103827136