知识点十一:二叉树

前言

树,作为一种非线性数据结构,比线性表、栈、队列等线性数据结构要复杂得多,内容也比较多。关于树,有几个比较常用的概念需要重点掌握,那就是:根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数,以及树的高度。而关于树的重要结构主要包括:二叉树、二叉查找树、平衡二叉查找树、红黑树、递归树等。

树(Tree)

再完备的定义,都没有图直观。下图中画了几棵“树”。我们来看看,这些“树”都有什么特征?
在这里插入图片描述
有没有发现,“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。

再看看下面这幅图,A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点 E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的 G、H、I、J、K、L 都是叶子节点。
在这里插入图片描述
除此之外,关于“树”,还有三个比较相似的概念:高度(Height)、深度(Depth)、(Level)。它们的定义是这样的:
在这里插入图片描述
在这里插入图片描述
记这几个概念,这里有一个小窍门,就是类比“高度”“深度”“层”这几个名词在生活中的含义。

  • 高度:在我们的生活中,“高度”这个概念,其实就是从下往上度量,比如我们要度量第 10 层楼的高度、第 13 层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是 0。
  • 深度:“深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是 0。
  • 层数:跟深度的计算类似,不过,计数起点是 1,也就是说根节点的位于第 1 层。

二叉树(Binary Tree)

树结构多种多样,不过我们最常用还是二叉树。二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。下图中给出的这几个示例都是二叉树,以此类推,你还可以想象一下四叉树、八叉树长什么样子。
在这里插入图片描述
上图中有两个比较特殊的二叉树,分别是编号 2 和编号 3 这两个。其中,编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树。编号 3 的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

满二叉树很好理解,也很好识别,满二叉树的特征非常明显,我们把它单独拎出来讲,这个可以理解。但是完全二叉树的特征不怎么明显啊,单从长相上来看,完全二叉树似乎并没有特别特殊的地方啊,更像是“芸芸众树”中的一种。那我们为什么还要特意把它拎出来讲呢?为什么偏偏把最后一层的叶子节点靠左排列的叫完全二叉树?如果靠右排列就不能叫完全二叉树了吗?这个定义的由来或者说目的在哪里?

要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?想要存储一棵二叉树,有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

先来看比较简单、直观的链式存储法。从下图应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式比较常用。大部分二叉树代码都是通过这种结构来实现的。
在这里插入图片描述
再来看基于数组的顺序存储法。我们把根节点存储在下标 i = 1 的位置,那左子节点存储在下标 2 * i = 2 的位置,右子节点存储在 2 * i + 1 = 3 的位置。以此类推,B 节点的左子节点存储在 2 * i = 2 * 2 = 4 的位置,右子节点存储在 2 * i + 1 = 2 * 2 + 1 = 5 的位置。
在这里插入图片描述
也就是说,如果节点 X 存储在数组中下标为 i 的位置,下标为 2 * i 的位置上存储的就是左子节点,下标为 2 * i + 1 的位置存储的就是右子节点。反过来,下标为 i/2 的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为 1 的位置),这样就可以通过下标计算,把整棵树都串起来。

不过,刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为 0 的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。比如下面这个例子:
在这里插入图片描述
所以,**如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。**这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。实际上,堆排序中的堆这个结构其实就是一种完全二叉树,最常用的存储方式就是数组。

什么样的二叉树适合用数组来存储?

二叉树既可以用链式存储,也可以用数组顺序存储。数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。

二叉树的遍历

如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是某个节点与它的左右子树的节点遍历打印的先后顺序。

  • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
  • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
  • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。
    在这里插入图片描述
    实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题 A,就假设子问题 B、C 已经解决,然后再来看如何利用 B、C 来解决 A。所以,我们可以把前、中、后序遍历的递推公式都写出来。
前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)

中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)

后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

有了递推公式,代码写起来就简单多了。

void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印root节点
  preOrder(root->left);
  preOrder(root->right);
}

void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印root节点
  inOrder(root->right);
}

void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印root节点
}

从前面的二叉树前、中、后序遍历的顺序图可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度跟节点的个数 n 成正比,也就是说二叉树遍历的时间复杂度是 O(n)

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。它是怎么做到这些的呢?

其实,这些都依赖于二叉查找树的特殊结构。二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。下图给出了几个二叉查找树的例子。
在这里插入图片描述

1.二叉查找树的查找操作

先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。
在这里插入图片描述
查找的参考代码如下:

public class BinarySearchTree {
  private Node tree;

  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }

  public static class Node {
    private int data;
    private Node left;
    private Node right;

    public Node(int data) {
      this.data = data;
    }
  }
}

2.二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。
在这里插入图片描述
插入的参考代码如下:

public void insert(int data) {
  if (tree == null) {
    tree = new Node(data);
    return;
  }

  Node p = tree;
  while (p != null) {
    if (data > p.data) {
      if (p.right == null) {
        p.right = new Node(data);
        return;
      }
      p = p.right;
    } else { // data < p.data
      if (p.left == null) {
        p.left = new Node(data);
        return;
      }
      p = p.left;
    }
  }
}

3. 二叉查找树的删除操作

二叉查找树的查找、插入操作都比较简单易懂,但是它的删除操作就比较复杂了 。针对要删除节点的子节点个数的不同,我们需要分三种情况来处理。

  1. 第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如删除下图中的节点 55。
  2. 第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如删除下图中的节点 13。
  3. 第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那它就不是最小节点了),所以,我们可以应用前面的两条规则来删除这个最小节点。比如删除下图中的节点 18。
    在这里插入图片描述
    删除的参考代码如下:
public void delete(int data) {
  Node p = tree; // p指向要删除的节点,初始化指向根节点
  Node pp = null; // pp记录的是p的父节点
  while (p != null && p.data != data) {
    pp = p;
    if (data > p.data) p = p.right;
    else p = p.left;
  }
  if (p == null) return; // 没有找到

  // 要删除的节点有两个子节点
  if (p.left != null && p.right != null) { // 查找右子树中最小节点
    Node minP = p.right;
    Node minPP = p; // minPP表示minP的父节点
    while (minP.left != null) {
      minPP = minP;
      minP = minP.left;
    }
    p.data = minP.data; // 将minP的数据替换到p中
    p = minP; // 下面就变成了删除minP了
    pp = minPP;
  }

  // 删除节点是叶子节点或者仅有一个子节点
  Node child; // p的子节点
  if (p.left != null) child = p.left;
  else if (p.right != null) child = p.right;
  else child = null;

  if (pp == null) tree = child; // 删除的是根节点
  else if (pp.left == p) pp.left = child;
  else pp.right = child;
}

实际上,关于二叉查找树的删除操作,还有个非常简单且取巧的方法,就是单纯将要删除的节点标记为“已删除”,并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

4. 二叉查找树的其他操作

除了插入、删除、查找操作之外,二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点。此外,二叉查找树还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树

支持重复数据的二叉查找树

前面我们都是默认二叉查找树中节点存储的都是数字。很多时候,在实际的软件开发中,我们在二叉查找树中存储的,是一个包含很多字段的对象。我们利用对象的某个字段作为键值(key)来构建二叉查找树。我们把对象中的其他字段叫作卫星数据。前面讲的操作,如果存储的两个对象键值相同,这种情况该怎么处理呢?

第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。

第二种方法比较不好理解,不过更加优雅。每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点的右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理。
在这里插入图片描述
这样一来,查找数据的时候,当遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,直到遇到叶子节点才停止。这样就可以把键值等于要查找值的所有节点都找出来。
在这里插入图片描述对于删除操作,我们需要先查找到每个要删除的节点,然后再按前面讲的删除操作的方法,依次删除
在这里插入图片描述

二叉查找树的时间复杂度分析

二叉查找树的形态各式各样。比如下面这个图中,对于同一组数据,我们构造了三种二叉查找树。它们的查找、插入、删除操作的执行效率都是不一样的。
在这里插入图片描述
图中第一种二叉查找树,根节点的左右子树极度不平衡,已经退化成了链表,所以查找的时间复杂度就变成了 O(n)。这其实是一种最糟糕的情况,我们现在来分析一个最理想的情况,当二叉查找树是一棵完全二叉树(或满二叉树)的时候,插入、删除、查找的时间复杂度是多少呢?从前面的内容我们可以得知,不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是 O(height)。既然这样,现在问题就转变成:如何求一棵包含 n 个节点的完全二叉树的高度?

树的高度就等于最大层数减一,为了方便计算,我们转换成按层来分析。从图中可以看出,包含 n 个节点的完全二叉树中,第一层包含 1 个节点,第二层包含 2 个节点,第三层包含 4 个节点,依次类推,下面一层节点个数是上一层的 2 倍,第 K 层包含的节点个数就是 2(K-1)。不过,要注意的一点是,对于完全二叉树来说,最后一层的节点个数有点儿不遵守上面的规律了,它包含的节点个数在 1 个到 2(L-1) 个之间(假设最大层数是 L)。因此,把每一层的节点个数加起来就是总的节点个数 n,也就是说,如果节点的个数是 n,那么 n 满足这样一个关系:

n ≥ 1+2+4+8+...+2^(L-2)+1 且 n ≤ 1+2+4+8+...+2^(L-2)+2^(L-1)

借助等比数列的求和公式,我们可以计算出,L 的范围是 [log2(n+1), log2n +1]。因此,完全二叉树的层数小于等于 log2n +1,也就是说,完全二叉树的高度小于等于 log2n。

确定一颗二叉树的高度有两种思路:第一种是深度优先思想的递归,分别求左右子树的高度。当前节点的高度就是左右子树中较大的那个+1;第二种可以采用层次遍历的方式,每一层记录都记录下当前队列的长度,这个是队尾,每一层队头从0开始。然后每遍历一个元素,队头下标+1。直到队头下标等于队尾下标。这个时候表示当前层遍历完成。每一层刚开始遍历的时候,树的高度+1。最后队列为空,就能得到树的高度。

显然,极度不平衡的二叉查找树,它的查找性能肯定不能满足我们的需求。我们需要构建一种不管怎么删除、插入数据,在任何时候,都能保持任意节点左右子树都比较平衡的二叉查找树,也就是所谓的平衡二叉查找树。平衡二叉查找树的高度接近 logn,所以插入、删除、查找操作的时间复杂度也比较稳定,均为 O(logn)。

散列表 vs 二叉查找树

散列表的插入、删除、查找操作的时间复杂度可以做到常量级的 O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是 O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?

第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。

第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。

第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。

第五,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

小结

一、树
1.树的常用概念
根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数以及树的高度。
2.概念解释
节点:树中的每个元素称为节点
父子关系:相邻两节点的连线,称为父子关系
根节点:没有父节点的节点
叶子节点:没有子节点的节点
父节点:指向子节点的节点
子节点:被父节点指向的节点
兄弟节点:具有相同父节点的多个节点称为兄弟节点关系
节点的高度:节点到叶子节点的最长路径所包含的边数
节点的深度:根节点到节点的路径所包含的边数
节点的层数:节点的深度+1(根节点的层数是1)
树的高度:等于根节点的高度

二、二叉树
1.概念

  1. 什么是二叉树?
    每个节点最多只有2个子节点的树,这两个节点分别是左子节点和右子节点。
  2. 什么是满二叉树?
    有一种二叉树,除了叶子节点外,每个节点都有左右两个子节点,这种二叉树叫做满二叉树。
  3. 什么是完全二叉树?
    有一种二叉树,叶子节点都在最底下两层,最后一层叶子节都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。

2.完全二叉树的存储

  1. 链式存储
    每个节点由3个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式比较常用,大部分二叉树代码都是通过这种方式实现的。
  2. 顺序存储
    用数组来存储,对于完全二叉树,如果节点X存储在数组中的下标为i,那么它的左子节点的存储下标为2i,右子节点的下标为2i+1,反过来,下标i/2位置存储的就是该节点的父节点。注意,一般情况下,为了方便计算子节点,根节点存储在下标为1的位置。
    完全二叉树用数组来存储时是最省内存的方式。

3.二叉树的遍历
①前序遍历:对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
②中序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的本身,最后打印它的右子树。
③后序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印它本身。
前序遍历的递推公式:
preOrder® = print r->preOrder(r->left)->preOrder(r->right)
中序遍历的递推公式:
inOrder® = inOrder(r->left)->print r->inOrder(r->right)
后序遍历的递推公式:
postOrder® = postOrder(r->left)->postOrder(r->right)->print r
时间复杂度:3种遍历方式中,每个节点最多会被访问2次,所以时间复杂度是O(n)。

三、二叉查找树。

  1. 概念
    在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。
  2. 它支持快速地查找、插入、删除操作。
    不过,这只是针对没有重复数据的情况。对于存在重复数据的二叉查找树,有两种处理方法。一种是通过链表和支持动态扩容的数组等数据结构,让每个节点存储多个值相同的数据;另一种是,每个节点中仍然只存储一个数据,稍加改造原来的插入、删除、查找操作即可。
  3. 二叉查找树的时间复杂度分析
    在二叉查找树中,查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极端情况的时间复杂度分别是 O(n) 和 O(logn),分别对应二叉树退化成链表的情况和完全二叉树的情况。为了避免时间复杂度的退化,针对二叉查找树,又设计了一种更加复杂的树,平衡二叉查找树,时间复杂度可以做到稳定的 O(logn)。

思考题

  1. 给定一组数据,比如 1,3,5,6,9,10。可以构建出多少种不同的二叉树?
  2. 如何通过编程,求出一棵给定二叉树的确切高度呢?

参考

《数据结构与算法之美》
王争
前Google工程师

发布了34 篇原创文章 · 获赞 1 · 访问量 474

猜你喜欢

转载自blog.csdn.net/Mr_SCX/article/details/103699576
今日推荐